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Preface 

The standard model of strong and electroweak interactions describes particle physics pheno- 
mena up to the scale of the vector boson masses. In spite of its success, it is generally believed 

that the standard model is not the ultimate theory. The large number of free parameters is 

still unsatisfactory, and gravity is not included at all. 

As there is no experimental sign of new physics beyond the standard model, every genera- 

lization of the model is motivated by theoretical arguments only. Supersymmetry (SUSY) is 
a particularly attractive extension of the minimM model. It could solve the fine-tuning pro- 
blem related to the hierarchy of scales, and it could also provide a link to gravity. Moreover, 
SUSY could play a significant role in building a consistent grand unified theory (GUT) of the 

strong and electroweak interactions. If bosons and fernfions are to be part of such a scherae, 

supersymmetry is essential. 
The most impressive motivation for SUSY comes from extrapolation of the LEP high precision 
data. Including SUSY matter in the running couplings, and masses of the SUSY-partners in 

the range 100 GeV - 10 TeV, the data display a spectacular coupling constant unification at 

the scale of 1016 GeV. Although this is very suggestive it is far from being a proof that nature 

knows about SUSY. 

The direct searches for SUSY particles at LEP, the Tevatron, and at the future hMron colli- 

ders LHC and SSC are the primary tests of the low-energy consequences of SUSY. However, 

the investigation of the scalar sector is of similar importance since the nlinimal model predicts 

at least one relatively light Higgs bosom For a detailed experimental search it is mandatory 
to incorporate the radiative corrections in the Higgs sector since they influence the theoreti- 

cal predictions considerably. Complementary to the direct searches, the indirect searches for 
SUSY through virtual effects in rare FCNC processes and in high precision observables are also 

important tests of SUSY. 
For a critical assessment of the present status of SUSY phenomenology a series of seminars 

was organized from May to November 1991 at the Max-Planck-Institut tlir Physik in Munich. 

The intention was to present the most recent results and to initiate discussions between field 

theorists and phenomenologists. The subjects covered include an introduction to the basic 
features of SUSY models, in particular the minimal supersymmetric standard model. This is 

tbllowed by discussions of SUSY's implications for direct searches at future colliders, effects in 
rare processes, quantum effects in the Higgs sector, and cosmology. A special section is devoted 
to dynamical electroweak symmetry breaking where SUSY can be used to solve the fine-tuning 
prohlem in a natural way. This predicts a mass of the top quark consistent with the bounds 
obtained from the precision LEP data and W mass measurements. 

Munich, April 1992 W. Hollik 
R. Rfickl 

J. Wess 
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ABSTRACT 

We give an introduction to N = 1 supersymmetry and supergravity and 
review the attempts to construct models in which the breakdown scale of the 
weak interactions is related to supersyrnmetry breaking. Special emphasis is 
put on the discussion of the minimal supersymmetric extension of the standard 
model of strong and electroweak forces. Grand'unified models are analyzed in 
their supersymmetric and nonsupersymmetric versions. 

I. THE STANDARD MODEL 

Although the standard model [I] of strong and eleetroweak interactions describes 
particle physics phenomena up to the 100 GeV scale very well, it is in general believed 
that it is not the ultimate theory of everything. Gravity is not included and many 
parameters are used to fit the data. But there is not the slightest experimental sign 
of new physics beyond the standard model. Every generalization of the model is thus 
motivated only by theoretical argumentations. To appreciate these constructions we 
need to have a closer look at  the standard model itself. We shall skip details and 
concentrate on those points that make us believe that there must be new physics beyond 
the TeV-scale. 

The standard model is based on the gauge interactions of the strong and electroweak 
forces with gauge group SU(3) × SU(2) × U(1). It thus contains 12 spin 1 gauge bosons: 
eight gluons of SU(3), three SU(2) weak gauge bosons and the hypercharge gauge boson 
of U(1). The photon will be a particular combination of the neutral SU(2) gauge boson 
and the hypercharge boson. The fermions of the theory consist of three generations of 
quarks and leptons, where we assume the existence of the top quark for which direct 
experimental evidence ist still lacking. The spin-l/2 fermions of a family have the 
following transformation properties with respect to SU(3) × SU(2) x U(1): 

= 1, - 2 / 3 )  
d = (~, 1,1/3) (1.1) 

L° = ( " : )  = 

a= (I,I,I) 



where a = 1, 2 is an SU(2) index and the first two entries in the brackets denote the 
dimensions of the SU(3) × SU(2) representations while the last entry denotes U(1) 
hypercharge. Electric charge is given by Q = T3 + Y. Thus the up-quark, for example, 
has Q(u) = 1/2 + 1/6 = 2/3 whereas for the down quark we obtain Q(d) = -1 /3 .  

The socalled Higgs sector contains a scalar SU(2)-doublet 

with potential V = #2(hih)+ )~(hth) 2 and one also introduces Yul~wa couplings for the 
interactions of the scMars with the fermions 

Ly = gaUhd + g,Lh~ + g,,Uhtfi (1.3) 

in all combinations that are allowed by SU(3) × SU(2) × U(1) gauge symmetry. A spon- 
taneous breakdown of SU(2) × U(1) occurs for negative #2 and the neutral component 
of h receives a vacuum expectation value (vev) 

< h > =  0 

where v = (_#2/~)1/2. SU(2) × V(1)y is broken to U(1)Q and three gauge bosons 
become massive 

1 
Mw* =- -~g2v (1.5) 

1 2 Mz = ~vv/gl + g2 

where gl and g2 are the coupling constant of SU(2) and U(1), respectively. The U(1) 
gauge coupling constant is given by 

e = g2 sinSw = gl cosSw (1.6) 

where ~w denotes the weak mixing angle. The mass of the physical Higgs-scalar is 
given by V/-Z-~ 2. Yukawa couplings then allow, in presence of the spontaneous break- 
down of SU(2) × U(1), mass terms for the fermions. The term gahUd, e.g. leads to 
gdvdd = mddd. The masses and mixings for the three families of quarks and leptons 
are parametrized by the 3 × 3 Kobayashi-Maskawa [2] matrix. 

Let us now count the parameters of the model. We have three gauge couplings gl, 
g2 and g3 usually parametrized by ae.m., astrons and sin 8w. In the gauge sector we 
have in addition a O -parameter multiplying FU"FP=ea,,pa in the action. Its actual value 
seems to by very close to zero as can be deduced from the absence of the electric dipole 
moment of the neutron. Nonetheless we have to treat O as an arbitrary parameter and 
it still has to be understood why its value is so small. 

In the Higgs sector we have introduced two parameters #2 and ~ of which one 
combination defines the scale of SU(2) × U(1) breakdown while the other determines the 
Higgs mass. The 9 fermion masses (not including the possibility for neutrino-Majorana 
masses) are parametrized by the Yutmwa couplings. The same applies to quark mixing 
consisting of 3 angles and one phase in the Kobayashi-Maskawa matrix, the latter giving 



Fig. 1.1: A dimension 6 operator that could lead to proton decay. 

rise to CP-violation. We do not know yet whether there is a corresponding mixing in 
the lepton sector. In any case we can conclude that the above mentioned quantities are 
completely free parameters in the standard model. Ally attempt to understand their 
specific values will require a generalization of the model. Apart from these questions 
we have eventually also to address the more fundamental puzzles out of which I shall 
mention some in the following. Why is the gauge group SU(3) × SU(2) × U(1), why is 
SU(2) broken and why at a scale of 100 GeV and not at the Planck mass? Why is the 
mass of the proton 1 GeV and is this scale related to other physical scales? Why do we 
have this repetition of families, why 3 families and why does a family not contain exotic 
representations of SU(3) × SU(2) × U(1) (like e.g. a 3 of SU(2))? Why are neutrinos 
massless (are they?) and why is the electron mass so small compared to the W-mass? 
These and many more related questions are the subject of discussions of the physics 
beyond the standard model. 

One important property of the standard model is the chirality of the fermion spec- 
trum. Fermion masses are protected by SU(2) × U(1), i.e. they can be nonzero only 
after SU(2) × U(1) breakdown. Thus all fermion masses are proportional to the vev of 
the Higgs-field (1.4) and this explains why fermion masses cannot be very large com- 
pared to Mw. It does, of course, not explain why the mass of the electron is so small 
compared to Mw and also the smallness of neutrino masses remains a mystery. Only 
the top quark seems to be as heavy as allowed by SU(2) × U(1). We will regard this 
chirality of fermions as a very important property of the standard model and will there- 
fore in the course of these lectures only discuss extensions that share these remarkable 
properties. 

Another important symmetry of the standard model is baryon (B)- and lepton (L)- 
number conservation. From the requirement of gauge invariance and renormalizability 
(i.e absence of nonrenormalizable terms in the action) the model has automatic B and 
L conservation. Among other things this implies the stability of the proton. Possible 
violations could come from higher dimensional (nonrenormalizable) terms as e.g. the 
one displayed in Fig. 1.1. This operator has dimension 6 and therefore the coefficient 
1/M 2 has the dimension of inverse (mass) 2. Mz denotes the scale of the new physics 
that is responsible for proton decay. From the long lifetime of the proton we conclude 
that Mx must be larger than 1015 GeV, a very large scale. For other processes, like 
lepton number violation, the corresponding scale could still be in the TeV region. It is 
a central question in all discussions of the physics beyond the standard model to isolate 
these new processes and discuss the corresponding scales. 
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Fig. 1.2: A triangle graph responsable for an anomaly. Wavy lines 
denote gauge bosons while the solid lines denote fermions. 

In models with chiral fermions there is the potential danger of gauge anomalies [3]. 
Such anomalies can be determined by the calculation of triangle graphs as displayed in 
Fig. 1.2. These give several constraints in the cases where all three gauge bosons come 
from the same gauge group, but in addition we also have mixed anomalies e.g. photon- 
gluon-gluon, photon-graviton-graviton as well as a global SU(2)-anomaly [4] (implying 
an even number of doublets). In the standard model we find a cancellation of anomalies 
within a given family, i.e. the spectrum and the quantum numbers of the fermions are 
arranged in such a way that the sum of the graphs of Fig. 1.2 cancels exactly. Does 
this tell us something about the quantum numbers with respect to U(1)y [5]? Let us 
for a moment consider one family as given in (1.1) but with arbitrary hypercharges: 
(3, 2,p), (3, 1, q), (3, 1, r), (1,2, s) and (1, 1, t), After normalization t = 1 the absence 
of anomalies gives a unique solution p = 1/6, q = - 2 / 3 ,  r = 1/3 and s = -1 /2 ,  thus 
hypercharge is quantized in the standard model. A word of caution should be added 
here. In our argumentation we have assumed the SU(3) x SU(2) representations of the 
particle content of the standard model and also demanded anomaly cancellation within 
one family. The authors of ref. [6] have generalized the analysis. They tried to find a 
minimal set of particles in SU(3) × SU(2) × U(1) which is chiral and anomaly free (and 
participating in all 3 interactions). If one just considers triangular anomalies such a set 
is given by (3, 1, Q), (3,1, - Q ) ,  (2,1, q), (3,1, - q )  and (1, 2, 0) but it suffers from a global 
SU(2) anomaly. Including this constraint the minimal set is found to be exactly one 
family of quarks and leptons. We do not know at the moment what this fact can teach 
us, but at least we have to conclude that hypercharge quantization does not necessarily 
imply grand unification. Let us remark in closing this section that the behaviour above 
is strictly true only in the standard model. If we add e.g. a right-handed neutrino things 
change [7]. Add (1, 1,u) to the set described above and repeat the analysis. You will 
find that hypercharge is no longer quantized and instead obtain a one parameter family 
of solutions (the usual choice u = 0, of course, remains a solution). The discussion 
above shows, that it still pays off to have a closer look at the standard model. 

In the following we shall be concerned with a discussion of physics beyond the 
standard model. Since there is no phenomenological indication that contradicts the 
standard model, our argumentation has to remain purely theoretical. Efforts in such a 
direction include: 



• grand unification 
• L-R symmetric gauge groups 
• extra U(1)'s 
• extra Higgs-bosons 
• technicoulor 
• composite quarks and leptons 
• supersymmetry 
• Kaluza-Klein theories 
• supergravity 
• strings. 

In these lectures, of course, I shall concentrate on a presentation of those exten- 
sions of the standard model that are based on the incorporation of supersymmetry and 
supergravity. Grand unified models, whether supersymmetric or not, are also included 
in our discussion. 

2. GRAND UNIFICATION 

The aim is to find a group that contains SU(3) x SU(2) x U(1) and thus unifies 
the gauge coupling constants gl, g2 and g3 of the standard model. 

One very popular model [8] makes use of the astonishing fact that one family of 
quarks and leptons fits into the 3 and 10 representation of SU(5). We have the following 
identifications 

~¢r = 5c~ = ( d l ,  d2, d3; ¢, v) (2.1) 

for the complex conjugate of the fundamental representation and 

0 ~. u 
X '~' = 10 °''e = 0 u (2.2) 

0 

for the two-index antisymmetric representation. The hypercharge generator is defined 
as ( 10 0 0 

1 - 1  0 0 
0 - 1  0 

• 0 0 3/2 
0 0 0 3 / 2 /  

while the SU(3) × SU(2) embedding is obvious. 

(2.3) 

So far the classification of the fermions. The questions remains whether SU(5) is 
just a global symmetry to classify representations or whether it is a gauge symmetry. 
In the latter case we would explain the three gauge coupling constants gl,2,3 by a single 
constant gs. Present observation tells us, however, that gl, g2 and g3 are vastly different, 
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Fig 2.1: The desired evolution of coupling constants in grand unified models. 

an apparent paradox. 
dependent [9]. At the one-loop level they evolve according to 

with 

The resolution lies in the fact that coupling constants are scale 

bi = - 3  C + 4 Nf l f (R) -F  I Nsls(R) (2.5) 

where C is the quadratic Casimir operator of the adjoint representation, N$ (Ns) the 
number of Dirac fermions (complex scalar bosons) in representation R of which/f,s(R) 
is the quadratic Casimir (normalized to 1/2 for the fundamental representation). The 
question therefore is: at which scale do the couplings gl,2,3 coincide with a single cou- 
pling constant gs? The evolution of the coupling constants depends crucially on the 
fermion spectrum. For minimal SU(5) we obtain 

4 b3 =- l l+~Na 
b2 22 4 1 H (2.6) = - ~ - +  ~ N o +  6 

4 1__ H 
bl = ~ N G q -  10 

where Na  is the number of families and H the number of light Higgs-doublets. For NG = 
3 and H = 1 we obtain a behaviour as shoun in Fig. 2.1. At a scale of approximately 
M~ ~ 101 ~ GeV the three coupling constants aproach each other and we obtain a(M~) = 

~,(,---~ - ~i(M~-------~ + log (2.4) 
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g~/47r ,,~ 1/45 and g5 ~ g3 ~ g2 ~ x / ~ g i .  The weak mixing angle at this large scale 
M~ is given by sin 2 8W = 3/8. The behaviour of Fig. 2.1 can now be interpreted in the 
following way. Above M~ SU(5) is a good symmetry while at Mx SU(5) is broken to 
SU(3) × SU(2) × U(1) and below that scale the coupling constants evolve differently. 
SU(5) leads to 24 gauge bosons twelve of which receive a mass of order M= 

(24)~ = (" gluons(8,1) ( 3 , 2 ) )  (2.7) 
\ (3,~) (w, z,~) 

and they transform as (3, 2) + (3, 2) of SU(3) x SU(2). It is important to realize that 
quarks and leptons now sit in the same SU(5) representations and that these new gauge 
bosons denoted by X and Y can cause transitions between them. This leads to B and 
L violation and proton decay. 

U i4 oiJ 

l 

d js J -~5 | 

~X4 e 

Fig. 2.2: B and L violating process mediated by SU(5) gauge bosons 

P 0 
U 
U ~ T[° 

d e÷ 

Fig. 2.3: p --* rOe + in minimal SU(5). 

Consider the process in Fig. 2.2 which causes the transition ud --+ fie +. It leads to 
proton decay via a dimension six operator to p --+ e+v ° as shown in Fig.2.3. The rate 
for proton decay is suppressed by a factor M~ -4 leading to a proton lifetime of less than 
103° years in minimal SU(5). This is in contrast with the experimental observations 
and minimal SU(5) is ruled out. We shall later discuss grand unified models which do 
not suffer from this desease. For the moment we shall however still discuss the simplest 



model for paedagocical reasons. B - L is still conserved in the SU(5) model. This 
comes from the fact that one family of quarks and leptons consists of two irreducible 
representations of SU(5). Thus we have a global nonanomalous U(1) with charge S(5) = 
- 3  and S(10) = 1. This leads to 

- L = 5 ( S  + 4Y)  (2.8) B 

as a conserved quantum number (Y is hypercherge as given in (2.3)). In the present 
model this implies that there is always an antilepton in the final state of proton decay. 

The breakdown of grand unified groups is achieved by vev's of scalar fields in 
connection with a Higgs effect. In SU(5) the breakdown to SU(3) × SU(2) x U(1) 
can be achieved with a scalar ¢ in the adjoint representation, provided the vev has the 
following pattern: 

(i °°° 
1 0 0 

¢~ = v 0 1 0 (2.9) 
o o - 3 / 2  
0 0 0 - 3 / 2 /  

A second step of breakdown to s u ( a )  x U(1) in the standard model requires a 2 of 
SU(2) and in the grand unified model this generalizes to a doublet component in the 5 
of SU(5). We then have the following Yukawa-couplings 

gabH5 × (10)~ x (10)b (2.10) 

giving mass to up-type quarks, whereas 

' * (lO)b (2.11) gabH5 X (5)a X 

gives masses to down-type quarks and leptons. Thus masses for down quarks and leptons 
come from the same coupling and one obtains relations between them e.g. mb ..~ 3mr 
[10] at low energies. Similar relations, however, should also hold for the masses of the 
first two families and it remains to be seen whether grand unified predictions can help 
in the understanding of quark and lepton masses. Such mass relations exist in many 
grand unified models and mostly lead to embarrasing predictions. Therefore one adopts 
the viewpoint that only the heaviest family should satisfy these relations. 

In all grand unified there exists a fine-tuning problem [11] concerning the relation 
of the two scales of gauge symmetry breakdown (usually called the gauge hierarchy 
problem). Let us discuss it in the SU(5) model. In the Higgs potential we have among 
others the following terms 

m2HhH2 + m'Hh¢24H 2 (2.12) 

and ¢ is supposed to receive a vev as displayed in (2.9) with v ,-~ 1015 GeV. With 
respect to SU(3) × SU(2) g splits into (3, 1) + (1,2) with (masses) 2 m 2 + m'v and 
m 2 - 3/2m'v respectively. The SU(3) triplet of H should become heavy (M > 1011 
GeV) because of the potential danger of fast proton decay through the process displayed 
in Fig. 2.4. The moderate limit of 1011 GeV comes the fact that here the vertices are 
of the strength of Yukawa couplings which are smaller than the gauge couplings that 



appear in Fig. 2.2. There is no problem to achieve such large masses of the triplet since 
already v is supposed to be in the 10 is GeV range (which actually is the natural range 
of Higgs masses in the model). The problem lies in the fact that the Higgs doublet (as 
a part of the standard model) should become light; not exceeding the TeV scale, i.e. 
some 13 orders of magnitude below the scales rn, m I and v. This can be achieved by 
a fine tuning of the parameters such that m 2 - (3 /2 )m% becomes small. There is in 
principle nothing wrong with such a finetuning but one feels uneasy about it since one 
does not understand the relation between the two breakdown scales and also because 
the fine-tuning is not stable in perturbation theory. We shall come back to a discussion 
of this and related problems in the next chapter. 

~ij 
e 

T HK 
I 

- -  

ui4 5 

Fig. 2.4: Proton decay via Higgs exchange. 

The simplest grand unified model based on SU(5) is ruled out experimentally. The 
first indication in this direction came from the absence of proton decay but also more 
recently precision electroweak data are inconsistent with simple SU(5). We shall discuss 
the results explicitely in chapter 8 where we also consider supersymmetric grand unified 
models. In the nonsupersymmetric case a way out is to consider larger groups and try 
to move the grand unification scale to higher values. There is then a complication in 
group theoretical technicalities and we shall not have the time here to discuss the issues 
in detail. A complete treatment can be found in ref. [12]. 

To embed the standard model spectrum in a larger group we have to keep two things 
in mind. First we need to consider complex representations because of the chirality of 
the fermion spectrum. Secondly one has then to ensure the cancellation of anomalies. 
Prime candidates for grand unified models are then S U ( 2 N  + 1) with an anomaly free 
set of antisymmetric tensor representations, O ( 4 N  + 2) with a spinor representation and 
E6 with the fundamental 27-dimensional representation. The next simplest candidate 
to SU(5) is O(10). The adjoint representation is 45-dimensional and decomposes as 
24+ 10+ 10+ 1 with respect to SU(5). In fact SU(5) × U(1) is a subgroup of O(10) and 
the U(1) corresponding to B - L is now gauged. One chain of breakdown pattern to the 
standard model is then via SU(5) × U(1) but there are also others like SU(4) × SU(2) × 
SU(2). A remarkable property of O(10) is the fact that one family of quarks and leptons 
fits into one irreducible representation: the 16-dimensional spinor representation with 
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SU(5) decomposition 3 + 10 + 1. The additional SU(5) singlet has all the properties of a 
righthanded neutrino. The standard model Higgs can be embedded in the fundamental 
10-dimensional representation of O(10) and there is a single Yukawa coupling 10 x 
16 x 16 and one would expect e.g. a relation between mtop and mbottom. The Higgs 
field 10, however, contains two SU(2) Higgs-doublets: one coupling to up-type and 
the other to down-type quarks. Since the two could have different vev's we cannot 
expect mtop/mbottom to be fixed. Including the assumption that the masses of the 
light quarks are given by the same mechanism one would expect mass relations as 
rt2top/mbottom ~'~ mcharm/mstrange and as before we conclude that grand unified models 
do not make a decisive contribution to our understanding of quark and lepton masses. 
To work out the spontaneous breakdown patters of O(10) is already quite complicated. 
One needs representations of dimension 45, 16 and/or 54 and t26 and we shall not 
discuss these questions in detail [12]. 

The next step to more complicated groups is E6 which has recently again attracted 
interest because of the consideration of superstring inspired models. Here .we have 
E6 D SO(10) × U(1) and 78 gauge bosons decomposing as 45 + 16 + 1-6 + 1 of O(10). 
The fundamental representation is 27-dimensional and contains 16+ 10+ 1 of O(10): one 
family but also a lot of additional fermions. The Yukawa coupling term (27) a is unique 
and the breakdown requires at least a 351-dimensional representation. Higher rank 
groups like SU(2N + 1) and O(4N + 2) with N > 3 have also been considered for model 
building, among other motivations as attempts to explain the number of families. One 
aim would be, that three families of quarks and leptons are contained in one irreducible 
representation of a large gauge group. While such representations can be found, they 
usually predict many more exotic fermions and it seems that this approach is not the 
correct one to explain the number of families. 

Let us summarize some of the universal properties of grand unified models. One of 
them is charge quantization but remember from our discussion in the last chapter that 
this might already be a property of the standard model. Unification of gauge coupling 
constants was the prime motivation and it can be achieved. In the most promising 
models one obtains sin 20w = 3/8 at the grand unification scale Mz. Quarks and 
leptons sit in the same multiplet and therefore we necessarily obtain baryon number 
violation. This implies that Mx must have a rather large value and the simplest model 
is ruled out. The model leads to "naive" quark-lepton mass relations which are usually 
not very sucessful (maybe with the exception of mb/m,- ,,~ 3). Such questions now 
also concern possible neutrino masses. In all models except for simple SU(5) we have 
a righthanded neutrino and the possibility of a Dirac-mass term. In O(10) we would 
obtain m ,  ,,~ map according to the naive mass relation. How can one avoid a problem 
with such a neutrino mass? It can be achieved by assuming a large Majorana mass M 
for the righthanded neutrino and a mass matrix [13] 

(o 
with M >> m, leading (approximately) to the eigenvalues M and m2/M. M can be 
as large as the scale of O(10)-breakdown and exceed even 1015GeV. Assuming natural 
values for m as e.g. rn ~ 1GeV for the Dirac mass term we would have a mass of 10-6eV 
for the light neutrino. 
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It still remains an open question whether grand unified models are realized in 
nature. The long lifetime of the proton requires a rather large scale of Ms and the 
simplest model is ruled out. In many models Mx approaches the Planck-mass and one 
has to worry about the fact that the influence of gravitational interactions becomes 
inportant. We shall later come back to these questions again. 

3.THE PROBLEM OF THE WEAK SCALE 

In the grand unified models discussed above we had to perform a fine tuning to 
obtain the breakdown scale Mw of SU(3) x SU(2) × U(1) small compared to the grand 
unified scale M~ . More precisely we had to require 

3 , 
m 2 - ~ 0 0 0 G e V )  2 ( 3 . 1 )  

while m, m' and v were of order of 1015 GeV or larger. (3.1) was required to keep 
the Higgs doublet mass in the range of a hundred GeV. There is nothing wrong with 
such a choice since m, m', and v are free input parameters and not constrained from 
other theoretical requirements. Nonetheless one might feel uneasy to perform such a 
fine tuning to a precision of 13 orders of magnitude. Also such a finetuning is not 
stable under radiative corrections, and has to be retuned order by order in perturbation 
theory. Again this can be done without leading to inconsistencies. The main question, 
however, remains why Mw is so small compared to M,  . We think that we should find 
a simple reason to explain why there is this hierarchy of scales. Such a reason could be a 
symmetry as we encountered in the discussion of fermion masses. Here chiral symmetry 
protected the masses. The fact that we do not understand the smallness of Mw and 
have to rely on a finetuning of parameters is called the gauge hierarchy problem. 

The problem exists already within the standard model. Recall the Higgs potential 

V(h) = ~21hl2 + AIh?. (3.2) 

The Higgs mass is m = ~Z~-#2 and Mw = g2 < h > ~  80 GeV . Experimental bounds 
[14] on m come from LEP m > 40GeV while an upper bound of 1 TeV can be argued 
from uni~arity constraints. Observe that the mass scale of the standard model Mw is 
solely set by the parameters #2 and £ in the Higgs sector. 

Theoretically the model is very appealing; it is not just based on an effective La- 
grangian, like e.g. the Fermi theory of weak interactions, but it ig a renormalizable field 
theory. This has drastic consequences for the possible range of validity of the model; 
would it be nonrenormaliziable it necessarily would only be defined with a cutoff A 
(of dimension of a mass) and its region of validity would be bounded from above by 
A. Above A one expects new things to happen which are not described by the model. 
Since the standard model is renormalizable it could, however, be valid in a much larger 
energy range. Strangely enough this very nice property of the model constitutes one of 
its problems. The mass scale of 100 GeV is put in by hand and there is no idea about 
its origin: it is a completely free imput parameter. In a more complete theory one 
would like to understand the origin of Mw in terms of more fundamental parameters 
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like e.g. the Planck scale M p  ,,~ 1019 GeV, but such a complete theory would need more 
structure than present in the standard model. 

A reconfirmation of the statement that M w  is a completely free parameter is found 
in the discussion of perturbation theory. The parameter/,2 in (3.2) receives a Contri- 
bution due to the graph of Fig. 3.1 which is quadratically divergent. There is nothing 
wrong with quadratic divergencies as they do not spoil the consistency of the theory; 
we regularize them and define the theory in terms of the renormalized parameters. 
The actual correction to/,2 depends on the regularization scheme and the renormalized 
quantity is an arbitrary parameter even if we would have understood its value at the 
tree level. This is true for all quadratically divergent quantities. These divergences in- 
troduce a new mass scale in the theory which has nothing to do with the scales already 
present; it is an arbitrary parameter which we can choose at our will. To understand 
the origin of these masses the quadratic divergencies have to be absent; i.e. they have 
to be cut off at a larger scale by a new physical structure. With such a physical cutoff 
A we would have 

~#2 ,.~ ),A 2 (3.3) 

and to understand the order of magnitude of #2 it would not be appropriate to have A 
of the order of the Planck mass Mp but rather in the TeV region. An understanding of 
the order of magnitude of Mw would therefore require new physics in the TeV-region. 

I 
| J 
\ ! 

/ 
\ / 

Fig. 3.1: Quadratically divergent contribution from the scalar self interaction. 

Having agreed that the standard model might have this subtle theoretical problem 
one has to look for ways out. The presence of quadratic divergencies is originated by 
the existence of fundamental scalar particles. One way out is to remove these scalars 
from the theory. Since we have to break SU(2) × U(1) spontaneously (and want to 
maintain Lorentz invariance) some scalar objects have to exist; they could be composite 
as postulated in the technicolour approach [15]. A new gauge interaction becomes strong 
in the region of a few hundred GeV; leading to the formation of conderisates and many 
composite bound states. This is the new physics in the TeV-region. 

But this is not the only possible solution and we could try to insist to live with 
fundamental scalar particles. Remember for this purpose the situation with spin I parti- 
cles. Models containing spin 1 particles have usually serious theoretical problems Unless 
there is a gauge symmetry that make these fundamental spin 1 particles acceptable. 
Observe that this gauge symmetry also stabilizes the mass of these particles; in the 
symmetric limit they have to vanish. Could we also have such a situation for scalar 



13 

Fig. 3.2: A contribution to #2 from supersymmetric partners 

masses? In the standard model, of course, such a situation is not present. We can take 
the limit #2 __~ 0 and this does not enhance the symmetry of the action. 

The only known way to protect scalar masses is supersymmetry. This symmetry 
relates bosons and fermions and therefore makes bosons as well behaved as fermions 
which implies the absence of quadratic divergencies. Supersymmetry provides us with 
the physical cuttoff discussed earlier. In addition to the contribution to #2 given in Fig. 
3.i we have now a contribution of Fig. 3.2 with the supersymmetric partner of the Higgs 
boson in the loop. In the supersymmetric limit these two contributions cancel exactly. 
If supersymmetry is broken the masses of the boson-fermion multiplet are split. We get 
a contribution 

(~#2 ~ A(m~ - my)  (3.4) 

and we would require the quantity on the right-hand side to be in the TeV range. If we 
would remove the partner with mass m E  from the theory we would again recover the 
quadratic divergence of the standard model. Thus to solve the Higgs problem we have 
to consider new structure in the TeV-region. 

4. INTRODUCTION TO SUPERSYMMETRY 

Supersymmetry is a symmetry that transforms bosons into fermions and vice versa 
[16]. The generator of these transformations, the supercharge Q~ (c~ = 1, 2), transforms 

1 0 as a left handed Weyl spinor, a ( ~ , )  representation under Lorentz transformations. Its 
hermitean adjoint is denoted by Qh; a right handed Weyl spinor. The algebra is defined 
by 

[Q,, P,] = 0 (4.1) 

{Q~, Q~} = 2 a ~ P ,  (4.2) 

where a ~ denotes the Pauli matrices and P~ is the energy momentum operator. From 
this algebra we can immediately read off two important consequences. From (4.1) for 
# -- 0 we see that Q commutes with the Hamiltonian and states of nonzero energy are 
paired by the action of Q. Since Q is fermionic we have an equal number of fermionic 
and bosonic states degenerate in energy. Equation (4.2) relates the supercharge to the 
Hamiltonian and we have 

H = Po ~ Q Q t .  (4.3) 
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Thus H is semipositive definite. This implies that  in supersymmetric theories the vac- 
uum energy is well defined. Let I0 > denote the groundstate and let us suppose that  
supersymmetry is unbroken which implies QI0 > =  0 i.e. the vacuum state is symmetric. 
We then conclude for the vacuum energy 

E~¢ = <  01HI0 > =  0. (4.4) 

If, on the other hand, supersymmetry is spontaneously broken we have Q~ [0 > =  [¢~ > 5  
0. This then implies that  the supercurrent Jv~ can create a fermion (goldstone fermion) 
out of the vacuum 

< ¢~lJ~l 0 > =  f a ~  (4.5) 

and consequently the vacuum energy is positive and given by 

Ev~¢ = f2. (4.6) 

Ewe can therefore serve as an order parameter  for supersymmetry. Supersymmetry is 
broken if and only if Ev~c ~ 0. Together with (4.3) we can also conclude that  whenever 
a supersymmetric ground state exists it is always the true vacuum of the theory. If 
supersymmetry is spontaneously broken there is a massless fermion in the theory (in 
analogy to ordinary symmetries where one has a Goldstone boson). 

Representations of the supersymmetry algebra are most conveniently given in su- 
perspace. Superspace consists of ordinary space x g together with anticommuting Grass- 
mann variables 0~ and ~3" The algebra can then be rewritten as 

[SQ, Q8-] = 28a~,~P # (4.7) 
[SQ, OQ] = [08, Q8] = 0 

Let us insert here the rules for manipulat ing with the Grassmann variables. Indices can 
be raised or lowered with the constant asltisymmetric tensor e~fl = e~# with el2 = +1; 

and we have 8~ = e~Z8 z. The antispinor is defined as ~ = (8~) t a n d / ~  = %~/9~. The 

square is then defined as 82 = 8~8~ = -8~8  ~ whereas ~2 = ~6~6. Differentiation is 
defined as 

08~ 
O°88 - O8 ° - ~ (4.8) 

The reader should prove as an exercise that  0 3 ( 5 3 ( ~  ~) = - 4 .  Intergration for a single 

8 is definied as f d8 = 0 and f 8d8 = 1. 
A supersymmetry transformation can now be defined as follows 

S(x, 8, #) = exp(SQ + O~ - x~,P ~') (4.9) 

A superfield ¢(x, 8, ~) is defined as a function of x, 8 and ~ such that  it transforms as 
follows under a supersymmetry transformation 

S(y,,a, 6)[¢(xv,8,~)] = ¢(x ,  + y ,  - iaa~,O+iSav~,8+a,O+~ ). (4.10) 
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The generators of the symmetry can be represented as differential operators in super- 
space 

0 
P• = i~x ~ - iO~ (4.11) 

0 i ~ / 3 ~ 0 "  (4.12) 
Q .  - 0 0  . 

0 +iO~a~,O," (4.13) 

Slightly different representations (so-called right- and left-handed) can be defined by 

¢(X#, 0., O) : eL(X# "~ iOat, O, O, O) = Cn(x t, - iOauO, O, 0). (4.14) 

In the L-representation the charges are given by 

0 
Q L  = Oo = oo (4.15) 
O,L = --00 + 2iOa~O t' 

and we have covariant derivatives 

DL = O0 + 2intO0 tL 
/ )L = --0#. (4.16) 

If ¢(x, O, O) is a general complex superfield a chiral superfield is defined through 

/ )¢  = O. (4.17) 

Going to the L-representation we see that superfields obeying constraint (4.17) are 
independent of 0. We can now expand ¢(x, 0). Since 0~ is anticommuting the expansion 
in 0 will terminate after three terms (a = 1, 2) 

¢(z, 0) = ~(x) + 0~¢ ,  + O'~O,~F(x). (4.18) 

The field ~(x) is a complex scalar field and ¢(x) is a Weyl fermion. F(x) is a complex 
scalar field which, as we will see later, is auxiliary and does not constitute dynamical 
degrees of freedom. A chiral superfield describes therefore a (spin0, spinl) multiplet. 
Supersymmetry transformations transform the different components into each other 

~ = a~¢f~ (4.19) 
5¢~ = 2azF(x)  + 2icr~a(~(0,~) (4.20) 

5F = -i(Ot,¢Z)a~(~ ~. (4.21) 

They transform lower components to higher ones ~ --+ ¢ ---+ F and in addition we 
have terms with derivatives of lower component fields. Observe that the variation of 
F is a total derivative; this will be important when we try to construct Lagrangians. 
Before, however, we have also to introduce multiplets that contain spin 1 fields. They 
are contained in a general superfield ¢(x, 0, 0) that fulfills the reality condition ¢* = ¢. 
I will not write this superficial in full generality but only a subset of its components. 
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They are sufficient for our purposes because all spin 1 bosons we will introduce in the 
examples under consideration axe gauge bosons. For the general vector superfield we 
can then describe the physical states in a special gauge (the Wess Zumino gauge) 

V(x,  O, O) = -Oat, OV ~ + iO00~ - iO00A + I O00~D (4.22) 

where V t' is a spin 1 field and A is a two component spinor: the gauge fermion. D again 
will turn out to be an auxiliary field. This then supplies us with a (spin 1, spin 1/2) 
supermultiplet. The supersymmetry transformations axe given by 

~V~ = iaat,~ + i6~crt,,~ (4.23) 

8,k = aaU~'(Ou V~, - O~,Vt, ) + 6~D (4.24) 

5 9  -- - a ~  O~ ~ + 6~at' O~,~ (4.25) 

Again, the variation of the highest component is a total derivative. To construct man- 
ifestly invaxiant actions we can make use of this fact. If we take the F(D) component 
of a (composite) chiral (vector superfield as a density L the action 

S = / d4xL (4.26) 

will be invariant under supersymmetry transformations. Let me give some examples. If 
we consider a chiral superfield ¢ any power n of it will also be a ehiral superfield. Take 
n ~ 2  

¢2 = ¢p2 + 2Vt? ¢ + O012~F - 2¢¢]  (4.27) 

and the F component is thus given by 

(q)2)F : 2~pF-  1 ¢ ¢ ,  (4.28) 

thus f d4x(¢ 2)g will be invariant under supersymmetry transformations. Next multiply 
¢ by its conjugate. ¢*¢ is a general vector superfield. Its highest component is given 
by 

i 
(O*¢)D = FF* - ~0~0#~ * + ~g, at, O"¢ (4.29) 

and f d4x(¢*¢)D is invariant. The expression in (4.29) is well suited to describe kinetic 
terms for a complex scalar ~ and a Weyl fermion ¢. In general we can therefore write 
the Lagrangian density as L = LF -k- LD a sum of F- and D-terms. The F-terms are 
usually called superpotential. In a renormalizable theory the superpotential dos not 
contain powers of degree higher than three in the fields. Let me discuss a simple model 
in detail 

L : (¢*¢)I) + m(¢ 2 + ¢'2)F + ~(¢3 + ¢,3)F (4.30) 

This reads in components 

L = (Ou~)(O~*) + ~¢~t, Ot~b + F F * +  
z5 
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+ m ( 2 ~ F  - 1 ¢ ¢  ÷ h.c.) ÷ )~(3~2F - 3 ( ¢ ¢ ) ~  ÷ h.c.). (4.31) 

We see that there are no kinetic terms for F.  F is an auxiliary field. It can be eliminated 
via the equations of motion 

F* ÷ 2rn~ ÷ 3A~ 2 = 0 (4.32) 

Observe that in general the auxiliary field is given by the derivative of the superpotential 
with respect to the scalar field 

F * =  0g(v) (4.33) 

where we have denoted the superpotential by g. Using (4.31) and (4.32) we can write 
the scalar potential of the model as 

log  _-- [2rn~o + 3)~0212 (4.34) 
2 

V = F F *  = 

and we see that the potential is semipositive definite as required by the algebra. We 
also know from there that supersymmetry requires vanishing vacuum energy. From 
V = F F *  we then conclude that supersymmetry is spontaneously broken if and only if 
an auxiliary field receives a vacuum expectation value. We will come back to this point 
in a moment. 

Let me first give some formulas for supersymmetric gauge theories. The relevant 
superfield to consider is V ~ (Vt, , A, D). One defines 

W~, = DD[exp( -gV)D,~  exp(gV)] (4.35) 

a spinorial chiral superfield (g now is the gauge coupling). The gauge kinetic terms can 
then be given by 

L =  ~--~(WC'W,~)F = -~G1 t,,,G~,v + 2 D 2 -  

- 2[,~a,(a" A ÷ ig[V ~, A]) - (O~A ÷ ig[V #, A])a,A] (4.36) 

where the field strength is given as usual by 

Gt,,, = OuV,, - O~,V~ + ig[V~, V~,]. (4.37) 

Observe that there are no kinetic terms for D, the auxiliary field. The minimal coupling 
of matter to the gauge system is given by 

i -  
(¢* exp(2gV)¢)D = Inuvl  2 - - ~ ¢ a , n  ¢ ÷  

+ - + F F *  (4 .3S)  

where D r = O r ÷ igV~ is the gauge covariant derivative. Let us now discuss super- 
symmetry breakdown. Remember that the order parameter is the vacuum energy. The 
general form of the scalar ~potential is given by the auxiliary fields 

= FiF* + 1D2.  (4.39) V 
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Since D is real we always have V >_ 0 and supersymmetry is broken if and only if 
auxiliary fields receive a vev. The fermionic partner of this auxiliary field is the goldstone 
fermion as we can see from the supersymmetry transformations (4.19-21) and (4.23-25) 
e.g. 

~¢ = {Q, ¢} = Y + . . . .  (4.40) 

Let us now discuss a special example in detail 

L = ( X X * ) D  + ( Y Y * ) D  + (ZZ*)D + ([~X(Z 2 - M 2) + g Y Z ] F  + h.c.). (4.41) 

We first derive the equations of motion for the auxiliary field F* = -Og/O~i  and obtain 

= - M 2 )  

= - g z  ( 4 . 4 2 )  

F }  = - g y  - 2~xz 
a 

Supersymmetry would be unbroken if the equations F x  = Fy  = F z  = 0 have a solution. 
This is not the case here. F x  = 0 requires < Z > =  M and this implies Fy  • O. 
Thus supersymmetry is broken and the vacuum energy is strictly positive. To find the 
groundstate we have to minimize the potential 

Y = ~2]z2 - M 2 ]  2 + g2[z]2 + ]gy + 2Axz] 2. (4.43) 

Let me suppose M s < g2/2)~2. The minimum of the potential  is then found at z --- y = 0, 
F x  = )~M 2 and Ev~c = X2M 4. The vev of x is undetermined. The fermion Cx 
is massless; it is the goldstone fermion of spontaneously broken supersymmetry; the 
partner of that  auxiliary field F x  tha t  has received avev .  The fermions Cy and Cz 
pair up to give a Dirac fermion of mass g. For the bosons x is massless and y has mass 
g. Only the complex scalar z shows a splitting. The two real scalar have (mass) 2 

g2 + 2A2M2 

g2 _ 2) 2M 2 (4.44) 

This is the only place where we see in the spectrum that  supersymmetry is broken. 
In general the splitting of the multiplet is determined by its coupling to the goldstone 
fermion and in the model at hand only the Z-multiplet couples to the goldstino multiplet 
at the tree graph level through the term X X Z  2 in the superpotential. In particular this 
always implies tha t  the fermions do not feel the supersymmetry.breakdown at the tree 
level. In the following we will denote by M s  the supersymmetry breakdown scale as 
the vev of the auxiliary field; here M~ = F x  = AM 2. The vacuum energy will then be 
given by Ms  and the splittings of the multiplets are given by 

Am 2 ~ XM~ (4.45) 

where £ denotes the coupling of the corresponding multiplet to the goldStino multiplet. 
Another striking property of spontaneous supersymmetry breakdown can be read 

off from formula (4.44). The sum of the masses of the two real scalars is the same as in 
the case of unbroken supersymmetry and this is in fact a very general property of tree 
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level mass splittings in theories with spontaneously broken supersymmetry. It is most 
conveniently expressed in terms of the supertrace of the (mass)2-matrix 

SWrm2 - - E ( - 1 ) 2 J ( 2 j  + 1)m 2 (4.46) 
J 

where J denotes the spin and rnz is the mass matrix of the states with spin J. In the 
model discussed before, even after the breakdown of supersymmetry [17] we have 

STrm 2 --- 0. (4.47) 

As we have seen, fermion masses are not affected by the breakdown and the splitting in 
the scalar sector is given by 

(4.48) 

The result in (4.47) is a very general result of spontaneously broken global su- 
persymmetry, there is only one exception in the presence of a U(1) gauge group with 
nonvanishing trace of the charge matrix. Let us discuss this as our next example. 
Consider 

" 1  

L = 2-~2 [W~W~]F + [4" exp(2gV)¢]D + [2~V]D (4.49) 

After elimination of auxiliary fields one obtains 

F = 0  
D = - ~  - g~*~ (4.50) 

and the potential is given by 

V = 2D2 = 21~ + g~p*9~I2. (4.51) 

We can now distinguish two cases. Consider first g~ < 0: we obtain < D > =  0 and 
supersymmetry in unbroken; but we have 

< ~*~ > =  -~- # 0 (4.52) 
g 

and U(1) is spontaneously broken. The second choice is g~ > 0 and we obtain < D > 5  0 
and supersymmetry is spontaneously broken [18]. In the first case a supersymmetric 
version of the Higgs-effect takes place. The massless gauge boson and the complex scalar 
combine to give a massive gauge boson and a real scalar of the same mass. In addition 
through the term 

g(~*(A¢) - ~(A¢)) (4.53) 

also ~ and ¢ combine to a Dirac fermion of mass g < ~ >, degenerate with the mass of 
the bosons. 

In the second case, supersymmetry is broken and < D > =  ~. )~ is the goldstino 
and the gauge boson remains massless since U(1) is unbroken. Only 9~ couples to A and 
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2 = g ~ a n d m ¢  = 0 .  The D and feels the breakdown of supersymmetry.  We obtain m~ 
supertrace of the mass mat r ix  is therefore in general nonvanishing 

STrm 2 = 2TrQ < D >, (4.54) 

a counterexample to (4.46). 
Supersymmetr ic  field theories have be t te r  ultraviolet behaviour than usual field 

theories. We have seen that  already in our discussion of quadrat ic  divergencies in chapter 
3. But not only the quadrat ic  divergencies are absent, we found (~rn 2 = 0; not even a 
finite contr ibut ion in the limit of unbroken supersymmetry.  The improved ultraviolet 
behaviour manifests itself in socalled nonrenormalizat ion theorems [19]. They  imply 
that  masses as bilineax terms in the superpotent ial  are not renormalized in per turbat ion 
theory. Previously it was believed that  all terms in the supei:potential would be stable 
under  radiative corrections, since it can be shown that  all contributions from loops 
involve an integrat ion over full superspace f d2~gd2~. Recently it has been observed, 
however, tha t  in the presence of massless field the tril inear terms could receive finite 
corrections [20]. Theories with N-extended supersymmetries  (N > 1 supercharges) have 
less and less divergencies, N = 4 theories are finite. 

! \ 

\ / 

Fig, 4.1: A potent ial  contr ibut ion to the F¢-tadpole 

These nonrenormalizat ion theorems axe crucial for the survival of supersymmetry 
in per turba t ion  theory*.  To il lustrate this fact consider our example with superpotential  

X X Z  2 + g Y Z  - )~M2X.  (4.55) 

If we choose M 2 = 0 we have unbroken supersymmetry.  If a coefficient M 2 could be 
generated in per tu rba t ion  theory, this would lead to a breakdown of supersymmetry.  
Such a term, however, is not  generated. Consider e.g. the Wess-Zumino model g = 

* Apparent ly  [21] a finite correction of the tri l inear terms in the superpotential  does 
not invalidate this argumentat ion.  
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m¢2 + )~¢3 and compute the coefficient of f d28¢ = F¢ from the graph given in Fig. 
4.1. The coupling comes from the term 

3A(F~ 2 + F'T*2). (4.56) 

Let us write new F¢ = f + ig and V = a + lb. (4.56) then leads to 6)~[/(a 2 - b  2) -2gab]. 
In addition we have to consider the mass insertion 4m2T*~ = 4rn2(a 2 +b2). This implies 
that the graph in 4.1 does not give a contribution to g since the mass insertion does 
not contain an ab-term. For f ,  however, we have two contributions, from the coupling 
to a 2 and to b 2. They cancel because of the opposite sign of the f a  2 and fb  2 couPlings 
and therefore an F¢ counterterm is not produced in perturbation theory. 

If, however~ supersymmetry is spontaneously broken, these nonrenormalization the- 
orems do no longer hold and there are in general finite corrections proportional to the 
mass scale of supersymmetry breakdown. In the above example, this would happen 
if the masses of a a and b were not degenerate. Our prime motivation to consider 
supersymmetry in connection with the standard model is the absence of quadratic di- 
vergencies. They are absent even in the case of spontaneously broken supersymmetry. 
Actually we have to be a bit more careful. The coefficient of a Fayet-Iliopoulos term 
f d4~V is in general quadratically divergent and we have to demand ~ i  Qi -- 0 where 
Qi are the charges of the U(1) gauge theory. The question remains whether quadratic 
divergencies are absent in an even more general framework than spontaneously broken 
supersymmetry. It turns out that certain so-called soft breaking terms can be included 
in a supersymmetric theory without reintroducing quadratic divergencies. They consist 
of ~*~, T2 + z2.2, ~3 + ~.3 terms as well as a gaugino mass term hA. For a more detailed 
discussion see ref. [22]. 

5. THE PARTICLE CONTENT OF A SUPERSYMMETRIC STANDARD MODEL 

Let us recall the particle content of the standard model. Apart from the gauge 
bosons G~, W~, B~ in the adjoint representation we have quarks and leptons in three 
families with quantum numbers 

together with a Higgs doublet 

Q = ( d )  = (3, 2,1/6) 

= (3, 1 , - 2 / 3 )  

d = ( 3 , 1 , 1 / 3 )  

L = ( ~ : )  = ( 1 , 2 , - 1 / 2 )  

~ =  (1,1,1) 

(5.1) 

The spectrum of this model is not supersymmetric and we have to add new degrees of 
freedom. There are no fermions in the adjoint represelItation of SU(3) × SU(2) × U(I) 
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and we thus have to add gauge fermions (gauginos), which together with the gauge 
bosons form a massless vector superfield V = (Vt,, ,k, D). Quarks and leptons require spin 
0 partners in chiral superfields e.g. E = (qae, g, Fe) where q0e is a complex scalar with 
quantum numbers. Next observe that the lepton doublet has the same quantum numbers 
as the Higgs: could it be that q0e = h -?  Unfortunately it does not work. One reason is 
the absence of lepton number violation and other reasons will become clear in a moment. 
We thus have to add scalar partners to all quarks and leptons. To the Higgs scalar we 
have to join the partner spin 1/2 fermions. With these fermions SU(2) × U(1) is longer 
anomaly free and we have to add a second Higgs chiral superfield H = (1,2, +1/2). In 
short, every particle in the standard model requires a new supersymmetric partner and 
one has to add a second Higgs superfield. 

To construct the L. agrangian we first write the kinetic terms and the gauge couplings 
in the usual supersymmetric way as discussed in the last chapter. We still have to discuss 
the superpotential which contains mass terms and the supersymmetric generalization 
of the Yukawa couplings. If we write the most general superpotential consistent with 
the symmetries and renormalizability it will contain two sets of terms 

g = gwanted + gunwanted. (5.3) 

Let me first discuss the term 

i j  a b E - i j z a a  r r b ~  f ~  i j  a . 
gwanted -~ #HH + gELi H ~bEj + gDt~i n a b J J j  + guQi H~Uj (5.4) 

where i,j = 1 , . . .  3 is a family index and a, b are SU(2) indices (colour indices are 
suppressed). It is not really clear whether we want # from a theoretical point of view 
but we need it to break certain global symmetries that might be problematic. I will 
come back to this point later. Observe that we really need two Higgs superfields to give 
masses to all quarks and leptons. We can here no longer couple the up-type quarks to 
h* as we did in the nonsupersymmetric case. It is then also clear that in the breakdown 
of SU(2) × U(1) both Higges have to aquire a vev to provide masses to all quarks and 
teptons. 

U 
V 

tl e 

Fig. 5.1: Proton decay through exchange of the scalar partner of d. 
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Unlike in the standard model where the requirement of gauge symmetry and renor- 
malizability automatically led to baryon and lepton number conservation we are here 
not in such a nice situation. This comes from the fact that the Higgs and the lepton dou- 
blet superfields have the same SU(3) x SU2) x U(1) quantum numbers. Consequently 
we have additional terms in (5.3) that we can write as (forgetting family indices) 

gunw~nted = Q~L%abD + L'*EL%ab + UDD. (5.5) 

These terms violate baryon and lepton number explicitly and lead to proton decay at 
unacceptable rates (as long as we assume the partner of the d-quark to be lighter than 
the grand unification scale). The terms in (5.5) have to be forbidden and we want 
to achieve this with help of a symmetry. We can turn the question the other way 
around. Suppose we drop (5.5) from the superpotential; does the symmetry increase? 
In fact it does. The new symmetry is a global symmetry that, however, does not 
commute with supersymmetry (called R-symmetry) [23]. Different components in the 
same supermultiplet have different charges. The concept of R-symmetry can best be 
explained in superspace. Suppose we have a symmetry that transforms/9 to ¢i~0; so 0 
has charge R = 1. Suppose we have a chiral superfield ¢ transforming also with R = 1. 
Then it is obvious that the scalar component transforms as 

qO ~ ei~qo (5.6) 

with R = 1. But what happens to the fermion? Since R(¢) = 1 we have 

(0¢) --, (5.7) 

but the phase comes already from the 0 transformation and obviously R(¢) = 0. The 
F-component of the superfield has .R(F) = -1 .  Invariance of the Lagrangian requires 
f d20g to have R = 0 whereas d20 transforms with R = -2 .  In the given example only 
the term ¢2 is allowed in the superpotential. So far our discussion of the implication of 
R-symmetry on chiral superfields. The vector superfield is real and consequently R = 0. 
From this we conclude 

R(V.) = 0 
n(~) = 1 (5.s) 

and this is a general and important statement. Gauglnos transform nontrivially under 
any R-symmetry. The R-symmetry, in particular, forbids Majorana masses for the 
gauge fermions. 

Let us now go back to the superpotential (5.4) and (5.5). There is an R-symmetry 
with e.g. R(O) = 1 and 

R(H, H) = 1 
R(Q, L, U, D, E) = 1/2 (5.9) 

which leaves gw~ated in (5.4) as the most general superpotential. In other words this 
means that if we drop the terms in (5.5) a continuous global R-symmetry appears. To 
forbid these terms in principle a smaller symmetry like R-parity 

Rp = ( -1)  3B+L+2s (5.10) 
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(where B, L are baryon, lepton number and S is the spin) would be sufficient, but 
in general a continuous R-symmetry occurs. This continuous R-symmetry is some- 
what problematic since it forbids gaugino Majorana masses and at least for the case 
of the gluino we have experimental evidence that its mass cannot vanish. Thus the 
R-symmetry has to be broken. Since only a spontaneous breakdown of this symmetry 
is acceptable, this then would lead to an embarrassing Goldstone boson. Actually in 
our case it will be an axion since the R-symmetry is anomalous [24]. This then tells us 
that this spontaneous breakdown cannot happen at an energy scale like lOOGeV. (The 
only exeption are supercolor models, where the axion can be made heavy through a 
supercolor anomaly but I will not discuss these models here.) The breakdown scale of 
the R-symmetry has to be larger to make the axion invisible [25], i.e. a breakdown scale 
of something like 101° to 1011GeV. In a simple way this, however, can only be realized if 
also the supersymmetry breakdown scale Ms  is large. Now remember that the multiplet 
splitting is given by zXm 2 ,~ 9M~ where g is the coupling to the goldstino. We thus 
need small couplings to have the supersymmetric partners of quarks and leptons in the 
TeV-range to provide us with a physical cutoff that stabilizes Mw.  These couplings 
have to be really small, compare them e.g. with the gravitational coupling constant ~. 
We have 

6m ,,~ nM~ = M ~ / M p  (5.11) 

which is in the TeV-region for Ms  - 101aGeV. Actually if we assume that all particles 
couple universally to gravity our requirement of the mass splittings implies Ms  to be 
approximately 1011GeV. It is thus natural to assume that the small coupling required 
from our discussion about R-symmetry is actually the gravitational coupling constant. 

We consider this as a hint to include gravity in our framework. This will lead us to 
the local version of supersymmetry which includes gravity automatically. It will turn 
out that such considerations help us in lifting the restriction of the supertrace formula 
in (4.47) and its desastrous consequences for model building. We shall not discuss this 
here in detail and refer the reader to ref. [26] for a review. 

Local supersymmetry [27] will also resolve the paradox with the cosmological con- 
stant in models of spontaneously broken supersymmetry. We shall see that one can 
have Evac = 0 in models of spontaneously broken local supersymmetry. 

6. :LOCAL SUPERSYMMETRY (SUPERGRAVITY) 

In local supersymmetry the transformation parameter is no longer constant but de- 
pends on space-time [27]. We have already acquired some experience in the framework 
of gauge symmetries: the local form of ordinary global symmetries; and for supersym- 
merry we proceed in the same way. In usual symmetries we had a scalar transformation 
parameter A. The requirement of local invariance then leads to the introduction of a 
gauge field A# with transformation property 6A~, = 0~A. In supersymmetry we have a 
spinorial parameter ca. Local supersymmetry then requires the introduction of a gauge 
particle qua  (the gravitino) with transformation property 6Ot,~ = O~,e~(x). Thus the 
gauge particle of local supersymmetry is a spin 3/2 particle and for reasons that will 
become clear in a moment it is called the gravitino. These statements can also be made 
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plausible when we discuss the Higgs effect. In ordinary global symmetries a sponta- 
neous breakdown implied the existence of Goldstone bosons. In the local version these 
bosons then supply the gauge bosons with the missing degress of freedom to make them 
massive. In supersymmetry the goldstone particle is a spin 1/2 fermion. This then caxl 
provide the two degress of freedom in the transition of a massless to massive spin 3/2 
particle: the super-Higgs effect. 

The next point to discuss shows a conceptual difference between ordinary sym- 
metries and supersymmetry. While in ordinary theories it was sut~cient for the local 
symmetry to introduce a spin 1 gauge boson in supersymmetry this is not the case. 
The gauge particle is a spin 3/2 fermion and supersymmetry requires a bosonic part- 
ner. The construction of local supersymmetry has shown that this partner is a spin 2 
boson that has to have all the properties of the graviton. This then implies that local 
supersymmetry necessarily includes gravity. We could have guessed that already from 
the algebra 

[e(x)Q, Og(x)] = 2e(x)at, g(x)P +'. (6.1) 

On the right hand side we have a space-time translation that differs from point to point: 
a general coordinate transformation. 

We have now to discuss explicit Lagrangians containing chiral matter and gauge 
fields coupled to the (2,3)-supergravity multiplet. In general this requires a lot of tedious 
calculations which I shall not repeat here. Also the general form of the Lagrangian is 
quite lengthy and I refer to the literature where the complete Lagrangian can be found 
[29]. I will instead concentrate on a analysis of the scalar potential of these theories 
which we need for our ,further discussion. 

Remember that in the global case the most general Lagrangian was defined by three 
functions of the superfields: the gauge kinetic terms W 2, the matter field kinetic terms 
S(¢* exp(gV)¢) and the superpotential g(¢). In the local case the most general action 
can be defined by fc~(C)W~W ~ (with indices a, ~ labeling the adjoint representation 
of the gauge group) and the K£hler potential 

G = 3log ( - ~ - ) -  log(,g,2). (6.2) 

The kinetic terms of the scalar particles zi are then given by 

02G 
G}DuziDU z j* - OziOzj.'Dt, ziDt*zJ* (6.3) 

where zi is the lowest component of a chiral superfield ¢i. The scalar potential reads 

= - e x p ( - a ) [ 3  + Gk(G-i)~G ~] + l f j D ~ D Z .  (6.4) V 

In these lectures I will use what is called minimal kinetic terms 

a} ' (6.5) = -Sj .  
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This simplifies our formulas considerably and allows us nonetheless to see all the essential 
properties of the potential.  The Kghler potential  can therefore be written as 

IgP 
G = -  M2 log M6 (6.6) 

where we have explicitly written out the mass scale M related to the gravitational 
coupling constant n: 

M - 1 _ Mm~ncl, ~ 2.4 × 1018GeV. 

The first derivative of the Kghler potential is then given by 

Z i* g i ( z i )  
G i - 

M 2 g ( z )  

and we can rewrite the potential  in terms of the superpotential g(z )  as 

v = exp \ -M-Z-/  [ g' + -  -zlgl 

(6.7) 

(6.8) 

(6.9) 

Contrary to the case of global supersymmetry the potential is no longer semipositive 
definite. I still have to tell you under which conditions supersymmetry is spontaneously 
broken. As in the global case this breakdown is signaled by a vacuum expectation value 
of an auxiliary field. There we had (compare (4.33)) the auxiliary field F given as the 
derivative of the superpotential; here we have an additional term 

z i* 
p = g i+  (6.1o) 

where in the limit M -~ co we recover the global result. Supergravity is now spon- 
taneously broken if and only if an auxiliary field receives a v e v .  The supergravity 
breakdown scale is found to be 

(ziz'*~ (6.11) M ~ = < F > e x P \ M 2  / .  

Observe that  the vacuum energy is no longer an order parameter.  We can have unbroken 
supergravity with Evac < 0 (Anti de Sitter) or Evac = 0 (Poincare supersymmetry) and 
Ewe > 0 always implies broken supergravity. The most important  observation, however, 
is that  we can have broken supergravity with vanishing w c u u m  energy (cosmological 
constant),  a situation that  could not occur in the framework of global supersymmetry. 
Here we need 

E F i F  = 3 2  --Tbl (6.12) 
i 

and we will assume this to be fulfilled. In all cases I know of, this is an ad hoc adjustment 
of the cosmological constant to zero. If (6.12) is fulfilled and if Ms  ~ 0 the gravitino 
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becomes massive through the super-Higgs effect 

g (z,z'*'~ (6.13) m3/2 = M e x p ( - G / 2 )  -- ~ exp ~ M2 ] 

and we therefore have the relation 

M~ (6.14) 
m3/2  - v ~ M  

valid in the case of vanishing cosmological constant.  
Let us now discuss some simple specific models with spontaneous supersymmetry  

breakdown. As a warm-up example consider one field z and a constant superpotential  
g = rn 3. The  potent ia l  is then  given by 

(zz* [izl  3 ] 
V = m 6 exp \ ~ - - ~ ]  [~--~ 21~2. (6.15) 

which has s ta t ionary points at z = 0 and Izl = v ~ M .  At z = 0 supersymmetry  
is unbroken but  this is a local max imum of the potential.  The  minima with broken 
supersymmetry  and Eva¢ < 0 are at z --- 4-x/~M. 

Next we want to give an example with broken supersymmetry  and E~¢ = 0. We 
consider a superpotent ia l  

g(z) = m~(z + 8) (6.16) 

A nonvanishing vev of 

Og z* ( z*(z+ 1~)) (6.17) F = - ~ z + - - ~ g = r n 2  1 +  M2 

would signal a spontaneous breakdown of supergravity. The  equation 

has the solutions 

M 2 + zz* + z*~ = 0 (6.18) 

z = - ~  4- /~2 _ 4 M  2. (6.19) 

Since (6.18) only allows real solutions (we assume /3 to be real) (6.19) implies tha t  
supersymmetry  is broken as long as ~ < 2M. Thus we can arrange for a supersymmetry  
breakdown but  we still have the annoying task to fine tune  the vacuum energy. Let us 
therefore first consider the case ~ = 0 in which the potential  is proport ional  to 

( M  2 + Jzt2) 2 - 3M2lz[ 2 (6.20) 

which is positive definite with minimum at z = 0. Increasing ~ implies decreasing the 
vacuum energy and also z aquires a nonvanishing vev. We can now increase/~ until  the 
potential  just touches zero. This is found to happen at ~ = (2 - v/'3)M with a v e v  of 
(x / ' 3 -  1 )M for the z-field. The  potent ial  now is semipositive definite with Ev~¢ = 0 and 
since I/~1 < 2M supersymmet ry  is broken and we have found the desired example. The 
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super-Higgs effect occurs. The gravitino swallows the fermion in the chiral superfield 
and has a mass 

m3/2 =  -exp ( v ' g  (6.21) 

and the two remaining scalars have masses 

m~ = 2,/gml/2 (6.22) 
m~ = 2(2 - ~ ) ~ I / 2 .  

Supersymmetry is broken and Ev~c remains zero. Observe that such a situation is not 
possible in the framework of global supersymmetry. Observe also, that in the present 
example we had to perform an explicit fine-tuning to obtain Ewe = 0. 

The simple example given above should serve only as existence proof for the mech- 
anism of supergravity breakdown in the presence of a vanishing cosmological constant; 
it does not give a convincing argument why the scale of supersymmetry breakdown has 
to be in the 1011 GeV region. The scale is set by putting the parameter m 2 in (6.16) 
at this value. Much effort has been devoted to the investigation of the question about 
the origin of supersymmetry breakdown. Up to now the only satisfactory suggestion in 
this direction consists in the consideration of a nonpertubative mechanism: supersym- 
metry brealcdown via gaugino condensation [30]. The history of this discussion is quite 
interesting [31]. Preliminary investigations with the help of an effective Lagrangian 
approach indicated that the formation of gaugino condensates does not break global 
supersymmetry [32]. Using similar methods it was first observed in [30] that such a 
no-go theorem is not valid in the framework of local supersymmetry and an explicit 
example of the spontaneous breakdown of supergravity was given. This was actually 
the first example of a model where supersymmetry is broken in a hidden sector that 
coupled only gravitationaly to the observable sector and where this breakdown of weak 
interactions was induced by radiative corrections. Nonetheless later most efforts were 
devoted to investigations of toy models like those given in (6.16). 

The fact that local supersymmetry is broken while global supersymmetry remains 
intact has some interesting consequences. To explain this consider the simplest model: 
pure supersymmetric gauge theory, just a gauge theory with fermions (the gauginos) in 
the adjoint representations of the gauge group. Such a theory is asymptotically free, the 
gauge coupling becomes strong at small energies and we assume, in analogy to QCD, 
that this leads to confinement and that gaugino bilinears condense. The magnitude of 
the condensate is given by the renormalization group invariant scale 

)~A > ~  h 3 ~ #3 exp(_ b0_~) (6.23) < 

where g denotes the gauge coupling constant and b0 is the coefficient of the one-loop 
~-function. If this would break global supersymmetry one would expect the scale of this 
breakdown to be set by A; but in the global limit supersymmetry remains unbroken! 
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Instead local supersymmetry is broken. We thus observe a suppression of the scale since 
the global limit is obtained as M --+ oo. This leads to 

< ),), > 
~ M (6.24) 

and a gaugino mass of order < hA > / M  2. Thus a value of A eveI1 exceeding 1011 GeV 
leads to observable sector mass splittings in the TeV region. 

While these first arguments were all based on effective Lagrangians, the results 
could be confirmed once the complete N -- 1 supersymmetric Lagrangian [29] had beeI1 
constructed. To see whether supersymmetry is broken or not we have to consider the 
auxiliary fields, now also including fermion bilinears: 

= exp( -G/2) (V-1) iVj  + ¼ / ~ k ( C - 1 ) ~ ( ~  ~) + . . .  (6.25) Fi 

where ~ are the gauginos, f~z the socalled gauge-kinetic function that multiplies 
W ~ W  ~ and f ~ k  = cOf~z/Oz k. A nontrivial vev < A), > #  0 thus' breaks supersym- 
merry provided that the gauge kinetic function is nontrivial [33]. The appearance of 
this derivative of f leads to the same relation between the scale of supersymmetry break- 
down and the gaugino condensate as given in (6.24), confirming the previous results. 

But there is more to (6.25) than just that. The gauge coupling constant depends 
on this gauge kinetic function g2 ,,~ 1/ f .  A nontrival f thus implies that the value 
of the gauge coupling constant is not a priori an input parameter but is dynamically 
determined [33]. This is true in any theory where supersymmetry is broken through 
gaugino condensates. 

With the investigation of four-dimensional superstring theories the consideration of 
supersymmetry breakdown via gaugino condensation became popular again [34]. Par- 
tially this is due to the fact that in such theories no other smooth and spontaneous 
breakdown of supersymmetry is known. But again there is more to it. First of all, 
string models do usually contain several sectors that are only coupled gravitationally as 
can be clearly seen in the heterotic Es × Es theory. Secondly the hidden sector candi- 
dates contain additional gauge groups that could give rise to gaugino condensates. But 
this is not yet enough. Through the existence of the dilaton field and its coupling to 
W~W~ we obtain a nontrivial gauge function f in a model independent way. Thus all 
the necessary requirements are met to render gaugino condensation to be the candidate 
for supersymmetry breakdown in hidden sector supergravity models. More details can 
be found in [31]. 

Before we close this section let us mention another interesting development in the 
construction of supergravity models. Up to now we have for the sake of simplicity 
discussed minimal kinetic terms for the scalar fields. Models with nonmininal kinetic 
terms can have interesting structure. Consider e.g. (compare (6.2)) 

G = 3 log(¢ + ¢*) - log [g[2 (6.25) 
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and take a constant superpotential. If you compute the potentiM as given in (6.4) you 
will find that it vanishes identically. Nontheless the quantity 

e - a  _ Igl 2 
(¢ + ¢.)3 (6.26) 

does not vanish and supersymmetry is broken. Such so-called no-scale models [35] might 
also have applications in the low energy limit of string theories. 

7. LOW ENERGY SUPERGRAVITY MODELS 

As we discussed in chapter 5 we should consider models that consist of two sectors: 
a hidden sector and an observable sector which are only coupled weakly through grav- 
itational interactions. The observable sector consists of the fields discussed in chapter 
5 which we will collectevely denote by Ya. The hidden sector is responsible for the 
breakdown of supersymmetry at a scale Ms ~ 10nGeV and leads to a gravitino mass 
in the TeV region. Its fields will be denoted by zi and we chose a superpotentiM 

~ ( z i , ~ )  = h(zi)  + g(y~). (7.1) 

Let us parametrize a general hidden sector by assuming that at the minimum 

< zi > = biM 

< h > = m M  2 (7.2) 

< hi > = <  Oh/Ozi > =  a * m M  

while all abserable sector fields y~ should have vanishing vev's. In the simple example 
of last chapter we had b = ~ - 1. The potential is given by 

u*~ 2 3 2" zT~ 2 + g,  + ~-~1~1 (7.3) V = e x p \ l Z " 2 v ~ _ Y " [ 2 /  h i + M 2  M2 - 

The vacuum energy vanishes provided that 

la, + b,I ~ = 3 (7.4) 
i 

and the gravitino mass is given by 

thus m sets the scale of the gravitino mass. We furthermore define [36] 

d = b*(ai + bi) (7.6) 

which will turn out to be an important parameter besides the gravitino mass. In the 
previous example we had A = 3 - V~- The potential given in (7.3) is complicated but we 
have m << M and we can simplify the expressions enormously by neglecting subleading 
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terms. Formally this means that we take the limit M --~ co keeping, however, m3/2 
fixed. We then replace the hidden sector fields by there vev's and obtain the following 
potential for the observable sector fields 

= + m /2 + m3/2 + (A - 3)9 + h.c. (7.7) 

Thus the spontaneous breakdown of supergravity in the hidden sector manifests itself 
as explicit breakdown of global supersymmetry in the low energy limit of the observable 
sector. The first term in (7.7) is the usual potential of a globally supersymmetric theory 
while the other terms are soft breaking terms. 

The second term gives universal scalar masses to all the partners of quarks and 
leptons. The supertrace formula is here given in general by [29] 

STrM 2 = 2(N - 1)m~/2 (7.8) 

where N is the number of chiral superfields. This avoids the mass relations obtained in 
the globally supersymmetric models and its desastrous consequences for model building. 
The universality property of the mass terms is needed to ensure the absence of flavour 
changing neutral currents. It appears here because of the choice of minimal kinetic 
terms for the scalar fields. 

The term (A - 3)g is of equal importance since it breaks all R-symmetries of 
the model. This implies that there are no problems with potential axions and that 
also gaugino Majorana masses are allowed (recall our discussion in chapter 5). This 
breakdown of R-symmetry is a direct consequence of the coupling to gravity. 

One more technical remark. In general we will deal with a superpotential g = g3 +g2 
where ga denotes the trilinear and g2 the bilinear terms. The last term in (7.7) then 
reads Am3/293 + ( A -  1)ma/2g2. Apart grom the gaugino mass m0 we find that m3/2 and 
A are the important parameters parametrizing the effects of supersymmetry breakdown 
in this class of models. 

Let us now specify the superpotential 

g = #HTI + gEHLE + gDHQD + guHQU (7.9) 

The pardmeter # has to be different from zero since otherwise we would have problems 
with a light higgsino (the supersymmetric partner of the Higgs-scalar) or axions. The 
value of # is not directly related to the supersymmetry breakdown scale but one can 
construct models where # is related to ma/2 and we shall assume that also # is in the 
TeV range [37]. 

Let us now address the question of SU(2) × U(1) breakdown. We have two Higgs 
multiplets and members of both have to receive nonvanishing vev's to give masses to 
all quarks and leptons, according to (7.9). The Higgs potential reads [38] (omitting the 
off-diagonal SU(2) D-terms which are irrelevant for the discussion of the minimum) 

V = - ~ l h l  ~ + r~lhJ ~ + m i ( h h  + h'h*)  + gl~ + 
2 

g2 (ihl2 _ 1 12)2 (7.1o) 
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where the last te rm corresponds to the SU(2)  × U(1) D- te rm and g2 and gl denote the 
respective coupling constants.  From (7.7) and (7.9) we obtain 

m~ = -B#ms/2 (7.11) 

B = A - 1  

The potential  consists of quadrat ic  and quart ic terms. The  quartic terms have a pos- 
itive coeffÉcient such that  the potent ial  at infinity is well behaved, with the exception, 
however, of ce r t a in  fiat directions for ]h] = ]hl. To have the potential  bounded from 
below we therefore have to impose a constraint  on the coeËficients of the quadratic terms 

, ~  + , ~  > 2tm~l. (7.12) 

Next we have to discuss the requirement of SU(2) × U(1) breakdown. Since there are 
no tril inear terms in (7.10) a s ta t ionary point at h = f~ :- 0 has to be unstable~ i.e. 
the mass matr ix  at this point has to have a negative eigenvalue. The requirement for a 
nontrivial SU(2) × U(1) breaking absolute minimum is therefore 

I. 314 > (7.13) 

With the input parameters  (7.11) we can observe now that  the constraints (7.12) and 
(7.13) can only be fulfilled in the limiting case 

m~/2 + p2 = B#m3/2 (7.14) 

i.e. at most we can arrive at a flat direction where SU(2) × U(1) breaking and non- 
breaking minima are degenerate. We would then have to look for radiative corrections 
to see whether  SU(2) × U(1) breaking minima can be reached at all within this ap- 
proach. This is actually a nice feature of the model. It tells you again that  we have 
not put  in SU(2) × U(1) breaking by hand.  This breakdown will be intrinsically related 
to the supersymmetry  breakdown and the dynamics of the model. But we still have to 
see whether  it works. In addit ion we have to observe that  all our input parameters  are 
defined at a very large scale M. The  value of the parameters  in the 100 GeV region 
has still to be computed  using renormalizat ion group improved per turbat ion  theory in 
the same way as we have to compute  the evolution of the gauge coupling constants in 
a grand unified model. This we would have also to do if our input parameters  would 
already allow a SU(2) × U(1) breakdown at the tree level. In the evolution from M 
to 100 GeV the parameters  will change substantially and it would not be clear at all 
whether  SU(2) × U(1) could not be restored. Before we do this calculation, however, 
let me give you a simple argument  how an SU(2) × U(1) breakdown can be induced by 
radiative corrections [39]. This argument  is not complete and has later to be backed up 
by the real calculation but  it exhibits the essential points of the mechanism quite nicely. 

Let us therefore look at the radiative corrections to the masses of the scalar par- 
ticles. One way to see whether  there  is a chance to have SU(2) × U(1) breakdown is 
to see whether  a m 2 of a Higgs scalar can become negative and at the same time the 
r n  2 of all others scalars in the theory should remain positive. The  contributions to the 
masses of the scalar particles can be classified as in Fig. 7.1. The sum of the two gauge 
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Fig. 7.1: Corrections to scalar masses. Wavy, dashed, solid and wavy-solid 
lines correspond to gauge bosons, scalars, fermions and gauginos respectively. 

contributions as well as the scalar selfinteraction contribution are positive. In the su- 
persymmetric limit these contributions are exactly cancelled by the remaining graph in 
Fig. 7.1 which contains a gauge fermion exchange. So if supersymmetry is exact nothing 
happens. Let us now suppose that supersymmetry is broken and for definiteness let us 
take m0 (a gauge fermion mass) as the only source of supersymmetry breakdown. With 
this mass the contribution of the last graph will be suppressed and the cancellation will 
no longer be complete. Since a negative contribution is suppressed all scalar particles 
in the theory will receive a positive contribution to their m 2. For the partners of quarks 
the dominant contribution comes from the strong interactions 

~rrt 2 ~ oz3m0 2 (7.15) 

where ~3 denotes the SU(3) coupling constant. Higges and partners of leptons will 
receive a smaller contribution 

~rrt 2 ,'~ a w m ~  (7.16) 

where a w  denotes a combination of SU(2) x U(1) coupling constants. No indication 
for an induced SU(2) x U(1) breakdown whatsoever. But let us look more closely. 
With these corrections in particular the partners of quarks become heavy and this will 
reduce the contribution of the graph with the scalar quadrilinear interaction. This now 
also gives us an asymmetry between the mass corrections for Higgses and for the scalar 
partners of leptons. Going back to (7.7) and (7.9) we see that the partners of quarks 



34 

couple to the Higgses but not to the partners of leptons. The suppression of this positive 
contribution then gives a negative contribution to the Higgs mass and in total we have 

5.~2 ~ awm0~ _ aY(a3"~) (7.17) 

where a y  denotes the Yukawa coupling responsible for the Higgs-squark quartic inter- 
action. The corresponding quantity for the partners of leptons is 

(%n 2 ,,~ awrn20 --  a y ( o ~ w m  2) (7.18) 

and will under reasonable circumstances stay positive and the partner of quarks were 
already heavy enough in the first case. With a large enough Yukawa coupling (but still 
small enough to trust, perturbation theory) the contributions in (7.17) could become 
negative and thus induce a breakdown of the weak interactions. A candidate for such 
a Yukawa coupling would be the one that is responsible for the mass of the heaviest 
particle in the model: the top quark. We can thus conclude two things from this 
simplified discussion of radiative corrections 

1) SU(2) × U(1) breakdown can in principle be induced in a desirable way. Observe 
that it is nontrivial to have the situation that only the m 2 Of a Higgs could become 
negative while other scalars keep positive m 2, i.e. everything could go wrong but 
it does not. 

2) The mass of the top-quark mtop, i.e. the top-quark Yukawa coupling is a crucial in- 
put parameter in the model (unlike in the standard model where it just parametrizes 
mtop) .  Knowing mtop would tell us a lot more about the model and its predictions. 
So far our quantitative discussion of these issues. We have now to go on and 

compute. As we said already, the parameters in (7.11) are defined at a large scale 
and we have to compute their evolution down to a scale of something like 100 GeV to 
discuss SU(2) × U(1) breakdown. For the whole model this then requires the integration 
of some 25 coupled renormalization group equations [40] and you can imagine that this 
cannot be done analytically. Let us first specify our boundary conditions. We should 
actually start our evolution at a scMe/5 = M ~-, 2 × 101SGeV, but we do not really know 
the spectrum of this theory at such large scales. There could be a grand unified sector 
and this could change the results. Let us therefore assume that the input parameters 
as given in (7.11) are valid at a scale/5 = Mx ~ 3 x 1016GeV where M~ is the grand 
unification scale in our model. If we assume that below this scale our model gives the 
complete spectrum we observe that the SU(3) × SU(2) x U(1) couplings constants g3, 
g2 and gl, once properly chosen at a scale/5 ~ 100 GeV meet at the scale/5 = M~ with 
magnitude a(M~) ~ 1/24. This we will then take as our starting point. Let us now look 
at some of the renormalization group equations more closely and the most important 
ones are certainly those for the masses of the scalars. Here I will give you the equations 
for/t, ~0t and ~0~ (the partners of t and t-quark) in the approximation that only the top 
quark Yukawa coupling (gt )  is different from zero. In the calculation the effects of the 
other couplings have also been included but here we give just the simplified expressions 

2 2 0 2 m 2 m 2 % m s / 2 l A t ]  

(7.19) 
1 3 22  1 . 22  

2~2 [~1~21 g2 + ~lmll gl] 
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~ ~ 2 2 2/t./22 In 2 ~,~2 
a t t a r ,  - + + (7.20) 

I 4 2 2  4 ~.~ 2 2 1  
271. 2 [317"n3t g3 "~ 9 1 glJ 

~ 0  2 1 2 ,  2 2 ~ 2 

(7.21) 
1 4 ~ 2 2  3 3~ 

where the ff~i denote the SU(3) x SU(2) x U(1) gaugino masses and At is the A parameter 
that comes with the term in the superpotential that contains the top-quark scalar. 
Observe that although we started with these A's to be the same they will no longer stay 
universal once we include the radiative corrections. 

We can now look more closely at these equations and recover the qualitative be- 
haviour we found in the simple example discussed above. The first term in (7.19) has 
a positive sign. This implies that the mass of h decreases if we lower/5 from Mx down 
to 100 GeV. If the top quark mass (i.e. gt) is large enough we could even imagine rn-~ 
to become negative, a sufficient (but not necessary) condition to have spontaneously 
broken SU(2) x U(1). But a lot of things could go wrong. The evolution equations of 
the partners of the top quark also have this first term with a positive coefficient and the 
m 2 of these particles should remain positive to keep SU(3)colour x U(1)e.m. unbroken. 
The reason why the model works is t h a t  the coefficients of these terms are 3 : 2 : 1 
in (7.19-21). Observe that these coefficients are not parameters which we can choose 
freely. They are an intrinsic property of the model and if they would have come out 
differently (like e.g. 1 : 2 : 3) there would be no way for this model to be correct. The 
second terms in (7.19-21) depend on the effects of gaugino masses and our discussion 
up to now is only valid for m0 = 0. Let us now include them. They have a negative 
coefficient and increase rn 2 with decreasing/5. At first sight they therefore do not favor 
an induced breakdown of SU(2) x V(1) (remember our simple example above). But 
indirectly they help. The terms in (7.20) and (7.21) contain the gluino contribution 
with the strong coupling constant g3 which is not present in (7.19). When we now lower 
/5 this could give a big contribution to m 2 but not to m~. The equations, however, ~t,~- 
are coupled and these large contributions enter the first term in (7.19) and speed up the 
evolution of m~ to small and possibly negative values. This is exactly the behaviour we 
had already guessed from our simplified discussion above. The discussion, however, also 
shows that it will be difficult (technically) to arrive at quantitative results. We have to 
solve all these coupled renormalization group equations numerically i.e. equations for 
the gauge couplings, gaugino masses, Yukawa couplings, scalar masses, A-parameters 
etc.. We have also to determine e.g. the value of the Yukawa couplings at M~ such that 
at /5 ,-~ 100GeV they have the correct values to parametrize the masses of quarks and 
leptons. 

The parameters relevant for the breakdown of SU(2) x U(1) have been identified 
before. They are m3/2, #, m0, A and gt- They have to fulfill one constraint to give 
SU(2) x U(1) breakdown with the correct value for Mw and Mz. To give you a feeling 
about this relation let me first discuss a simplified situation in which # = m0 = 0 [41]. 
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We know already from our discussion before that  a model with # = 0 has problems 
but here we just want to exhibit the mechanism in a simplified ease and also this case 
indicates what  will hapen in models where # is small. 

mo 
IJ 

0 0.005 0.01 0.02 0.05 0.1 - 

i I I I I I ~ Y  I 
100 120 1/.0 160 180 200 

mtop(GeV) 

Fig. 7.2: Breakdown of SU(2) × U(1) for # = m0 = 0 from ref. [41]. 

Fig. 7.2 shows the result of a numerical integration of the renormalization group 
equations in this simplified case # = m0 = 0. Only a part of the parameter space in A, 
m3/2 and mtop can lead to a breakdown of SU(2) x U(1), as we of course had to expect 
from our discussion above. Before we discuss the figure in detail, let me mention that 
with # = m0 -- 0 the sign of A is unphysical, only ]A[ matters. The allowed region for 
SU(2) × U(1) breakdown is bounded at the left-hand side in Fig. 7.2, because mtop 
(i.e. gt) is simply too small to drive m R negative enough to induce the breakdown. The 
actual value of this lower bound for mtop depends on A and in general large A allows 
smaller mtop. Nonetheless we obtain a large lower bound mtop for this configuration 
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# = m0 = 0 of something like 100 GeV. We will later see tha t  large mtop is usually 
required in models with small #. The bound on the right and side of Fig. 7.2 cannot 
yet be understood from our discussion up to now. It simply comes from the evolution 
equation of the Yukawa coupling gt 

0 3 3 1 ( 8  2 3 2 13 2~ 
- - g,  _5g  + + • ( 7 . 2 2 )  

This shows that  for large r~to p we need a large Yukawa coupling at Mx. If gt is large, 
however, the first term in (7.22) will be dominant.  It has a positive coefficient and 
will reduce the magni tude of gt when we lower ~. This then gives us an upper bound 
on into p of 200 GeV. Even if we choose gt at M ,  to be infinitely large the evolution 
(which goes with g~) will reduce it to a "small" value at p ~ 100 GeV. Of course, the 
approximation on which (7.22) is based breaks down for large gt but we see tha t  in the 
minimal model it is hard and unlikely to have mtop to be larger than  200 GeV. 

Last we have to discuss the bound in the upper part  of Fig. 7.2 related to the 
parameter  A. We have already seen tha t  large A makes it easier to induce the breakdown 
of the weak interactions, i.e. the breakdown is possible for smaller values of mtop. This 
comes from the appearance of IA] 2 in the first term in (7.19). One could actually think 
that  by increasing A sufficiently one could induce the SU(2) x U(1) breakdown for 
arbitrarily small mtop as long as gtAt stays large enough. This is true, but for large 
A other unpleasant things happen and we have to discuss this now in detail [42]. For 
this purpose consider again the potential  (7.7) but  for simplicity with just one Yukawa 
coupling: 

Og 2 
Y = ~ + m~/2 ([hi 2 + I~e[ 2 + I~el 2) + Am3/2gE (h~¢~e + h.c.).  (7.23) 

1 2 We also dropped the ~D term because it is irrelevant for our discussion. For small A 
it is evident that  the minimum of this potential  will be at h = pc = p~ = 0 with V = 0. 
For large A the trilinear terms will dominate in a certain range and the minimum will 
be at h = T¢ = Te 7 ~ 0 breaking weak interactions but also electromagnetic and strong 
interactions and this has to be avoided. Thus A has to be small enough. In the special 
potential (7.23) (as well as in the general case (7.7) with universal A) the critical value 
is A = 3 because in this case the potential  reads: 

V 0_~yg , 3  
= +m3/2y~ > 0 (7.24) 

and we need A _< 3. Including the radiative corrections in our model the A's will no 
longer stay universal and there will be separate bounds on A required by the absence 
of SU(3) x U(1)e.r,. breaking minima: 

A2E < 3 ( m2h + m~" + (7.25) 
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and similar expressions for AD, Au and all three families separately. These questions 
have to be carefully checked in all explicit models. 

Curves similar to Fig. 7.2 can now be produced for arbi t rary  values of the pa- 
rameters to explore the phellomenological consequences of the model. Apart  from the 
parameters  m0, ma/2, A and #, we have seen that  the value of mto p is very important .  
Since we know by now that  into p is quite heavy let us give another  illustration of the 
behaviour of the model  in this par t  of parameter  space (fig. 7.3), where we have cho- 
sen ma/2 = 100 GeV. There  is an approximate  scaling law. If you want to know the 
behaviour for different values areal2, just scale m0 and # by the same factor a while A 
should be scaled by a -1 (at least in large parts  of parameter  space). The  masses of the 
supersymmetr ic  particles, of course, depend strongly on these parameters.  Although 
they have to be computed  in the explicit models under  consideration one can use as a 
rule of thumb that  the mass of the phot ino is ,-~ 1 ~m0 while the mass of the gluinos is 
larger: approximately  3m0. The masses of the quark partners  are given by 

7.4mo ~ (7.26) m¢ ~ rnl/2 + 

while the lepton par tners  are less sensitive to the gaugino mass 

2 0.14m0 ~. (7.27) m t ~ m~/2 + 

Of course, the masses can be computed  exactly in a given model once the set of param- 
eters is specified. 

Let us now discuss the spectrum more thoroughly and start  with the Higgs system 
[38]. The  model  contains five physical Higgs bosons, two charged and three neutral  
ones, one of which is a pseudoscalar. The  mass of the charged Higgs bosons is given by 

m 2, ---- m 2 + m22 + M~z, (7.28) 
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thus heavy since ml 2 + m 2 has to be positive. The mass of the pseudoscalar is 

= mi + ml (7.29) 

while the mass of the scalars is given by 

m ~ =  1 1 ~  2 M2)2_4m~sM~(V21-v2)  2 
(m s + + (raps + z + (7.30) 

which gives a tree-level prediction of the minimal supersymmetric extension of the stan- 
dard model. One I-Iiggs scalar is alway lighter than the Z boson. The bound is reached 
in the case where the ratio of the vev's of the Higgs fields is very large. If in contrast 
vl = v2 we see that one of the scalars is massless. A crucial experimental test of the 
model will therefore come from ttiggs searches. The above formulae and bounds are 
only valid at the tree level. Radiative corrections could change the results [43]. These 
corrections depend strongly on the mass of the top quark and become large [44] if mtop 
exceeds a value of 130 GeV. For such high values also the limit on the mass of the light- 
est Higgs-boson moves up beyond the Z-boson mass. These questions will be thoroughly 
discussed by S. Pokorski and R. Hempfling in this seminar series. 

Let us next consider the gauginos. The gluinos only feel m0 with mg ~ 3m0. 
The so-called charginos are combinations of charged gauginos and higgsinos with mass 
matrix ( 

V2 

and the spectrum depends strongly on m0 and #. Observe that one of the states is 
massless in the limit # = 0 since there also one finds va = 0. The neutral gauginos 1~ r°, 
/)0 mix with the neutral higgsinos leading to a complicated mass matrix which we shall 
not discuss here in detail [26,45]. Among these particles one usually expects to find 
the lightest supersymmetric particle (LSP) which is stable as long as R-parity remains 
unbroken. This could be (and is over a wide range of parameter space) the photino 

= sin OwITV ° - cos OwB  ° (7.32) 

but there remain other possibilities, like a higgsino if # is small or e.g. also a scalar 
partner of a neutrino in the case where rna/2 is small compared to m0 and #. 

The masses of the scalar partners of quarks and leptons are essentially determined 
by m3/2 and m0 (see (7.26-27)) with squarks feeling a stronger influence of m0. One 
would then conclude that the sneutrino is the lightest of these particles, but this is not 
necessarily true. There could be an influence of quark masses mq on the squark masses 
msq in case of a large A 

: ) msq + mq Amqmsq 
2 2 (7.33) ~. Amqmsq  msq + mq 

and it could very well be that the partner of the top-quark is the lightest squark. So far 
our first discussion of the minimal supersymetric extension of the standard model (also 
called the minimal low energy supergravity model). It depends on several parameters, 
those in the superpotential (# and the Yukawa couplings) and those parametrizing 
the breakdown of supersymmetry (m3/2, mo and A). The order of magnitude of the 
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dimensionful quantities is supposed to lie in the 100 GeV to TeV region. The actual 
values, of course, are very important for a discussion of the supersymmetric particle 
spectra. 

8. SUPERSYMMETRIC GRAND UNIFICATION 

Grand unified models have been discussed in detail in chapter 2 and we shall concen- 
trate here on the changes that occur in a supersymmetric environment. This concerns 
the scale M~, a discussion of the superpotential, the question of the triplet-doublet 
splitting and proton decay via dimension 5 operators. We shall exclusively stay within 
the SU(5) framework, with 5 + 10 for a quark lepton family. The formulas for the 
evolution of the gauge coupling constants have been given in (2.4) and (2.5). If we 
assume a value of a3 ~ 0.1 and a ~ 1/128 at a scale of 100 GeV we obtain in the 
nonsupersymmetric model a scale M,  of approximately 5 x 1014 GeV and desastrous 
proton decay. The supersymmetric model, however, has more light particles and as 
such the evolution of coupling constants changes [46]. The most important contribution 
comes from the gauginos implying a slow-down of the evolution. As a result we observe 
a larger M,  .~ 3 x 1016 GeV roughly 60 times larger than in the corresponding non- 
supersymmetric model. Since proton decay is suppressed with the fourth inverse power 
of M,  there are no problems with proton stability in the supersymmetric SU(5) model. 
In fact a precision analysis of electroweak data [47] has recently shown that the super- 
symmetric model (with two Higgs doublets and a supersymmetry breakdown scale in 
the TeV-region) gives, in constrast to nonsupersymmetric SU(5) the correct prediction 
for sin 20w(Mz) .  The result is shown in Fig. 8.1. Thus supersymmetric grand unified 
models deserve further attention [48]. 

Let us first discuss the superpotential and the question of SU(5) breakdown. We 
denote the quark superfields Xi(10), I'~(5) i = 1, 2, 3 and the Higgs superfields H(5), 
H(5) and ~(24). The superpotential can then be writen as 

g = g i j X i X j H  -I- h i jX iY j [ I  + AIH~2fI -t- A2ff2 3 -t- M ¢  2 + M'H[-I (8.1) 

where gij determines the masses of up-type quarks and hij those of down-type quarks 
and leptons. The discussion of breakdown of SU(5) is similar to the one in nonsuper- 
symmetric SU(5) models. The auxiliary fields read 

- F ~  = A1H/-) + 3A2O 2 + 2MO 

- F  5 = AOH + M'[-I + g i j X i X j  (8.2) 

- F  H = A I ~ H  + M ' H  + h i jXiYj  

and a minimum with SU(5) broken to SU(3) x SU(2) x V(1) can be found with 

< H > = < / t  > = <  X~ > = <  Y~ > =  O, 
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Fig.8.1: sin 2 8 versus m t  and the predictions from grand unified models [47]. 

and i o o o o) 1 0 0 0 
< ~ > = v  0 1 0 0 (8.3) 

3 0 0 0 - ~  3 
0 0 0 -~-  

and vanishing vacuum energy. Since we have not discussed here the breakdown of 
supersymmetry there are degenerate minima with gauge group SU(5) and SU(4) x 
U(1). Also the breakdown of SU(2) x U(1) has finally to be induced by the effects of 
supersymmetry breakdown along the lines discussed in the last chapter. 

Again a fine-tuning has to be performed to keep the Higgs-doublets light. Here it 
amounts to 

3 
M t :  ~ V ) ~  1 ( 8 . 4 )  

This is similar to the nonsupersymmetric case but here we could argue that the fine- 
tuning concerns only parameters in the superpotential and is therefore not disturbed 
by radiative corrections. If we now would be able to find a reason why (8.4) should be 
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valid at tree level we could claim to have solved the fine-tuning problem. There have 
been several interesting attempts in this direction. As a first we discuss the mechanism 
of a sliding singlet [49]. Take a gauge singlet superfield Z and add a term AHZ[t to 
the superpotential. The H auxiliary field reads now 

- F  h =/~(A1 ¢I, + AZ + M').  (8.5) 

In the full theory, including supersymmetry breakdown, the doublet component of the 
scalar of /~  should receive avev  (in contrast to the SU(3)-triplet component). The vev 
of Z is undetermined and it can adjust its vev to have F = 0 for the doublet component, 
thus it slides to make 

¢ 1  

- 2 A l v  + Az + M I = 0 (8.6) 

and the Higgs-doublet remains light. This looks nice, but also this mechanism has some 
problems. We do not understand why the allowed Z 2 and Z 3 terms are absent and also 
we cannot rule out the possibility that the absolute minimum of the potential occurs for 
large vev's of both the triplet and the doublet. Moreover, there are usually problems 
with a small supersymmetry breakdown scale in the presence of light singlets [50]. 

A second mechanism to be discussed here is the one of the missing partner [51]. 
H and H contain (3, 1) + (2, 1) and (1, 2) + (1, 2) of SU(3) and SU(2) respectively. 
Try to find now a new representation which only contains a (3,1) but not a (1,2). The 
former could then pair up with the (2, 1) in H while (1, 2) would remain massless. The 
simplest example is a 50 of SU(5). It decomposes with respect to SU(3) × SU(2) as 
(8, 1) + (8, 2) + (1, 1) + (3, 2) + (6, 3) + (2, 1) and as a cross term in the superpotential 
we could imagine 50 × 5 × 75 with 75 = (1, 1) + (3, 1) + (3, 2) + (2, 1) + (2, 2) + (6, 2) q- 
(6, 2) + (8, 1) + (8, 3). Fortunately a vev of 75 can break SU(5) to SU(3) × SU(2) × V(1) 
thus avoiding the presence of • in (8.1). Instead we choose now for the superpotential 

g = A75 × 75 x 75 + M75 x 75 + A150 × 75 x 5-0 

+ A250 × 75 × 5 + A35-0 × 75 × 5 + 2~/50 × 5-0 (8.7) 

and as a mass matrix for the triplets we obtain 

( 0A3v A2V)M (8.8) 

(where v is the vev of 75), while the doublets remain light. Of course, one still has to 
explain why we have omitted a direct 5 × 5 mass term in (8.7) and the question of a 
complete solution of the fine tuning problem remains open. 

We had seen at the beginning of this chapter that M,  is quite large in supersym- 
metric grand unified models and that therefore proton decay via gauge boson exchange 
is sufficiently suppressed. This, however, is not the last word about proton decay in su- 
persymmetric grand unified models. Remember, that in the supersymmetric version of 
the standard model we already had to suppress proton decay via dimension-4 operators 
by introducing an R-symmetry (see chapter 5). Here we have to worry about dimension 
five operators [52] leading to proton decay as shown in Fig. 8.2. The first step couples 
two fermions to two bosons (therefore the name dimension-5 operator) and has a prop- 
agator suppression of 1/M, and the second step involves only light particles. Instead of 
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Fig. 8.2: Proton decay through dimension-5 operators. 

1/M2, in the amplitude we have now 1/M,  M w  and there is a potenti M danger of fast 
proton decay. A careful investigation of the dimension 5-operators has therefore to be 
performed. Out of the possible ones we need only consider those which are invariant 
under the R-symmetry discussed earlier and these are the two F-terms (QQQL)F and 
(UUDE)F . The latter reads in components 

~f iaUjbDkcF-~l ~abc (8.9) 

where a, b, c are SU(3) indices and i, j ,  k, I are generation indices. All fields above are 
scalar superfields and should obey Bose-statistics. The two/_7's are antisymmetrized in 
a and b and therefore i ¢ j and one of the U's has to come from the second generation. 
Since the charmed quark is heavier than the proton the presence of the term in (8.9) 
does not constitute a problem. The other possibility reads 

~,-~a r i b  ~ c  r rs ,. (8.I0) ~ ir ~ js ~ ktl~lu ~abc~ 

where r, s, t, u are SU(2)-indices. Here we can have i = j = 1 but then we need k = 2 
which leads to 

thus ce or s~. Proton decay therefore is only possible with the (uds~)F operator The 
dominarft decay mode is proton to K + and antineutrino, a quite unique prediction of 
supersymmetric grand unified models. The rate is faster than the one from dimension-6 
operators but it is not desastrously fast since p --+ K+~ involves Yukawa couplings in 
graphs like Fig. 8.2 as compared to gauge couplings in the process with dimension-6 
operators. 

At the moment p ~ K+~ seems to be at the border of observability. Supersymmet- 
ric grand unification deserves further attention; because of these predictions for proton 
decay but also because of the results from precision electroweak data as displayed in 
Fig. 8.1. 
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9. OUTLINE OF SEMINARS 

So far our presentation of the theoretical construction of the minimal supersym- 
metric generalization of the standard model and its grand unified extension. We have 
now to investigate the apparent experimental consequences of this approach to stabi- 
lize the weak scale. We shall see in the following lectures, that present experimental 
results do already give constraints on the parameter space of the model consisting of 
the gravitino mass rn3/2 , gaugino mass rn0, trilinear scalar couplings A as well as the 
Higgs-mass parameter #. Of course, also the still unknown mass of the top-quark will 
play a crucial role in this discussion. 

In the next lecture J. Kalinowski will present the experimental situation concerning 
the search for Higgs-bosons and the implications for the parameter space of the model. 
Then F. Borzumati will present a detailed overview of the mass spectra of supersym- 
metric particles and experimental bounds. S. Bertolini will represent implications of 
the supersymmetric models for flavour changing neutral currents, rare decays Of Kaons 
and bottom-mesons as well as CP-violation. Strong constraints of the model can also 
come from cosmological considerations. They will be summarized by A. Klemm. W. 
Majerotto will present a complete overview of supersymmetric particle searches at high 
energy colliding beam facilities. Indirect searches and loop effects will be discussed by 
S. Pokorski, J. Sola and R. Hempfling. The search for supersymmetry has to go on and 
we might expect exciting new results in the near future. 
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1 I n t r o d u c t i o n  

Recent years have witnessed a spectacular success of the standard model (SM) of funda- 

mental interactions - a gauge theory based on the SU(3)×SU(2)×U(1)  symmetry group 

[1]. All the experimental results from LEP measurements are in perfect agreement with 

the SM predictions. The only missing pieces are the top quark and the spin zero elemen- 

tary Higgs boson. The Higgs sector is one of the key points of the electroweak interactions 

needed for spontaneous symmetry breaking [2] which is responsible for the W j:, Z ° and 

fermion masses. Although one could argue that it is only a mat ter  of time until the miss- 

ing pieces are discovered, some theoretical problems related to the Higgs boson suggest 

that it is necessary to look beyond the standard model. 

There are three classes of problems which indicate that the standard model is in- 

complete. First, it has many arbitrary assumptions and parameters: gauge and Yukawa 

couplings, masses and mixing parameters, number and structure of fermion generations, 

handedness of fermionic representations etc. Second, the standard model is not asymp- 

totically free which suggest that it is an effective low energy theory of a more fundamental 

one. The third class of problems is directly related to the presence of the elementary scalar 

in the theory. The scalar fields have nice properties. They can have nonzero vacuum ex- 

pectation values (vev) without breaking Lorentz invariance. Therefore, they can trigger 

a spontaneous breakdown of gauge symmetries and thus provide masses to gauge bosons. 

Through Yukawa couplings to fermions they can also generate masses of quarks and lep- 

tons. However, they have also a bad property of aquiring quadratic divergences through 

radiative corrections. The correction to the mass of the Higgs boson is •m 2 ~ 92A 2, where 

A is a physical scale beyond which the low energy theory no longer applies. To understand 
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the physics at the Fermi scale --~ 102 GeV it would be inappropriate to have A of the order 

of the unification scale ~ 1015 GeV or the Planck scale ~ 1019 GeV but rather in the TeV 

region. This is so called the naturalness or hierarchy problem [3]. Therefore we are led 

to consider means to stabilize the Higgs sector below or at TeV scale. The only way to 

protect masses of elementary scalar particles is supersymmetry [4]. This symmetry relates 

bosons to fermions and thus makes the bosons to behave as well as fermions. 

Supersymmetry (SUSY) imposes a new requirement on the Higgs sector. In the SM 

only one Higgs doublet is sufficient to give masses to quarks and leptons. In the SUSY 

models two Higgs doublets are needed to give masses to up-type and down-type quarks 

(and leptons) and to achieve the cancellation of trangle anomalies. 

In this paper we discuss the Higgs sector of the minimal supersymmetric extension of 

the standard model. We study the mass spectrum of all the physical Higgs bosons and 

their interactions. We will not discuss the superpartners of the Higgs bosons nor Higgs 

boson decays into superparticles. These aspects of the SUSY model are dealt with in the 

lecture of A. Bartl [5]. Our discussion will be performed at the tree level without loop 

corrections. It is now well known that loop corrections in the case of a heavy top quark 

(m~ _> 120 GeV) are very important  [6]. Our disscussion will serve as a starting point 

for lectures by S. Pokorski [7] and R. Hempfiing [8] where effects of loop corrections are 

considered, although ocasionally we will mention the role of loop corrections. Nevertheless 

taking conservatively mt = 90 GeV (current experimental limit reads rn~ > 89 GeV [9]) 

there exists a large domain in parameter space where these corrections are small and the 

tree level discussion is justified. Therefore we will discuss current experimental limits and 

prospects for discovering Higgs bosons in future colliders. 

2 T h e  Higgs  s ec tor  in a m i n i m a l  S U S Y  m o d e l  

In a minimal supersymmetric standard model (MSSM) we employ two Higgs doublets 

H i  1 2 = ( H i , H 1 )  __- ( ~ 0 . , _ ~ - )  and H2 = ( H ~ , H ~ ) -  (T+,T0) with opposite hypercharge 

y(H1) = -1 ,  y(H2) = 1. The construction of the MSSM has beeen discussed in the 

lectures by H.P. Nilles [10]. Here we recall that the tree level scalar potential is given by 

1 2 V = Fi*Fi + -~(D, + D'2), (1) 

where the auxiliary fields F and D are as follows 

D~ = ~gA*o~jAj, 

= ~g'yiA*A~ + ~, D' 

OW 
F~ = OA~" (2) 
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Here W is the superpotential with the superfields replaced by their scalar components,  g 

and g' are the SU(2) and U(1) coupling constants, A~ is a generic notation for all scalar 

fields in the theory and ( is the Fayet-Iliopoulos term [11]. In the context of many models 

it can be argued that ( must be very small and we shall assume ~ -- 0. 

The superpotential W is a cubic gauge invariant function of the superfields containing 

the mass terms and Yukawa couplings. Its general form is as follows 

W = #e,iH~H j + WE, (3) 

WF eii(gEL~H~E , ,~i rrj D ,~iHJU~ : t gD~d  1-11 -}- gu~  e ), (4) 

with L and Q being left-handed lepton and quark doublets, E,  U and D - right-handed 

electron, up- and down-type quark singlets and gl - the corresponding Yukawa couplings. 

Unfortunately such a theory fails to break the SU(2)xU(1) gauge symmetry. There are 

two "minimal" solutions to achieve a spontaneous gauge symmetry breakdown. First, 

one can add a supersymmetric realization of a complex scalar Higgs field N. Then the 

superpotential takes the form 

W = e,j(#H~H~ + pH~H~N) + r N  + A N  3 + WE. (5) 

A second approach, which we will discuss in more detail, is to add soft-supersymmetry 

breaking terms. They have been clasified by Girardello and Grisaru [12] and are of the 

form 

~ , ,  .~2(~2 + ~.2), .(~3 + ~.3), .A~, (6) 

where ~ is a complex scalar and A a gauge fermion. 

Let us now write explicitely the scalar potential as a function of H1 and H2. We 

assume that colour and lepton numbers are not spontaneously broken, i.e. squarks and 

sleptons do not aquire vacuum expectation values (vev). We can then ignore Wp and 

write (the N field not present) 

+I~I2([H,I 2 + IH~I ~) + EoS~, (7) 
= ~ ~ J b . c . ) .  Eoy~ m~lg~f + m~IH2l 2 + (m3e~jH~H~ + (8) 

Furthermore, we assume that only neutral components of the Higgs fields aquire vev's 

< H1 > =  0 ' < H~ > =  (9) 
~2 

and the Higgs potential for the neutral fields reads as follows 

2;  0* 0 ~,~0 0 . "  
v = ( ~  ÷ I#1~)1~°1 ~ + (~  ÷ I~1~)1~1 ~ + ~ ~ + ~ . ~  ) 

+ ~-(g~ ÷ y~) ( l~° l  ~ - I~° l~ f -  
0 

(10) 
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The potential consists of quadratic and quartic terms with the quartic coupling given 

in terms of the gauge couplings. To have the potential bounded from below one has to 

impose 
2 m~ + m~ >_ 21m~l ~, (xa) 

because the quartic term has a fiat direction for I~°l  ~ = [~°1 ~. Since there are no trilinear 

terms, a stationary solution at ~0 = ~vo = 0 has to be unstable for SU(2)×U(1) breakdown. 

This can be achieved by requiring that 

Im~t ~ >__ 2 ~ (12 )  T ~  177~ 2 . 

In a low-energy supergravity model such a scenario can be obtained as follows [13]. At 

a very large scale M the supersymmetry is softly broken and the SU(2)×U(1) gauge 

symmetry is exact. When the renormalization group equations are used to evolve the 
2 parameters of the model from M down to energies of the order 100 GeV one of m~ 

becomes negative indicating the spontaneous breakdown of gauge symmetry. 

3 T w o - H i g g s  d o u b l e t  m o d e l  

Before we discuss explicitely the spectrum of the Higgs bosons in the SUSY model it is 

instructive to consider first a general two-Higgs doublet model. We shall then apply the 

results to the SUSY case. 

Take two complex, y = 1, SU(2) doublet scalar fields ¢1 = (~+, ~v °) and ¢~ = (~+, ~.).0 

The most general Higgs potential that spontaneously breaks SU(2)×U(1) is of the form 1 

V = ~0 + ~(¢~¢~ - v~) ~ + ~2(¢~¢2 - v~)2 + ~3[(¢~¢1 - v~) + (¢~¢2 - v~)]~ 

+A4[¢~¢1 ¢~¢2 - ¢~¢2 ¢~¢1] + As[Re(¢~¢2) - vlv2 cosx] 2 

+~[Im(¢~¢~) - ~1.~ sinai ~- (13) 

Because of hermiticity ~i are real. For ~ >_ 0 the potential is positive semi-definite and 

the global minimum is at 

() ( ) vl v2e TM (14) 
< ¢ 1 > =  0 ' < ¢ 2 > =  0 

and breaks the electroweak symmetry. For As ¢ A6 the potential violates CP in the Higgs 

sector. In the SUSY model we will see that As = A6. Then the last two terms can be 

rewritten as A~ [¢~¢2- vlv2e i× [2 and by a redefinition ¢2 ---+ ¢2 eix one can remove the phase 

X. As a result vl and v2 can be chosen to be real and positive. For a general discussion we 

1We follow the notation of Qunion and Haber [14]. 
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take As # A6 with X = 0. This corresponds to the most general CP-invariant two-Higgs 

doublet model. 

The matr ix for the squares of the Higgs boson masses can be obtained from 

1 02V 
M .2. (15) 

,3 - 2 0~p~0~vj 

where ~oi is a generic notation for real and imaginary parts of the Higgs fields and the 

eq.(15) is evaluated at the minimum (14). With X = 0 the 8 x 8 mass matrix M 2 breaks 

into a set of 2 × 2 mass matrices and the diagonalization is straightforward. 

3.1 Charged H'iggs b o s o n s  

The positive ~o + and negative ~o~- _= (~v+) * (i = 1, 2) states decouple and have equal mass 

matrices of the form 

- - V l V 2  "0 2 " 

The eigenstates are easily found 

H i = - ~ s i n / 3  + ~ c o s / 3 ,  

G + = ~ cos/3+ ~02 is in/3,  (17) 

with the masses 

2 
raG=l: = O ~ 

- ~  = ~4 (v~ + v~), ( i s )  

and where the mixing angle/3 is defined by 

tan/3 = v2/vl. (19) 

The massless would-be Ooldstone bosons G + are eaten up by the W ± and the H i are 

the physical charged Higgs bosoms. 

3.2 Im~ ° and I m ~  

The mass matr ix  is identical to the one in eq.(16) with A4 replaced by As. Therefore the 

same mixing angle/3 diagonalizes it with the result 

1 G °  = Imp, ° cosfl + Im~o °sin/3, 

1 A o = . i m ~  o s i n ~  + Im~ ° c o s ~ ,  
v~ 

2 0: m G o  = 

-4o = ~o (~ + ~). 

(20) 

(21) 
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The massless would-be Goldstone boson G O is eaten up by the Z ° and the A ° is the 

physical neutral C P :  - 1  Higgs bosonl Because of the nature of its couplings to fermions 

it is often called a pseudoscalar. 

3.3 R e ~  and ReT ° 

The eigenstates of the mass matrix 

B C (4A3 + As)vlv2 

are as follows 

( 4 A 3 + l s ) v l v 2 )  

~ v [  + 4 ( ~  + ~3)v~ 
(22) 

L H °  :-  (Redo 0 - Vl) cos oL J- ( R e ~  0 - 992)sin or, 
4~ 

l h °  = - ( R e v  ° - v j  s ins  + (Rev ° - v2) c o s . .  (23) v~ 

The masses of the neutral scalar Higgs bosons and the mixing angle ct are defined as 

mHO hO ---- -~ A 4: C J= ( A  - C )  2 + 4 B  2 , 

2 B  
tan 2a - 

A - C  
2 B  

sin 2a : (24) 
}/~ - 0) 2 + 4B {" 

By convention the Higgs boson H ° is chosen to be heavier than h °. 

Let us note that in the general CP-conserving two-Higgs doublet model there are 7 

independent parameters: A1-A6, and one of the vl and v2 (A0 plays no role and v~ + 

vg is fixed by the gauge boson masses). Therefore there is a lot of freedom in fixing 

the parameters of the model and to test it experimentally. The Higgs bosons can have 

arbitrary masses. Since the couplings are proportional to the masses (as seen for example 

explicitely from eqs.(18) and (21)) the Higgs sector becomes strongly interacting for heavy 

Higgs bosons like in the standard model. 

4 Implicat ions of supersymmetry  

Supersymmetry imposes strong restrictions on the Higgs sector. Comparing eqs (10) and 

(13) we find that  

A1 = A2, 

A3 = ~(g2 + g , 2 ) _  A1, 
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1 t2 -~4 = 2 A I - ~ g  , 

,~ = ,~6=2~l -~ (g~+g '~ ) ,  

1 
~o - 8 ( ~  - ~ )~(9~ + g'~)' 

lm2 ,~ = -I~l ~ + 2 ~ v ~ -  ~ z, 

lm~ m~ = -I#l 2 + 2 ~ 1  ~ - ~  ~, 

2 ~ViV2(4)~l -- g2 __ g,2), m 3 --~ 

where as usual .~ i  = (g~ + 9'~)(.~ + ~ ) / 2 .  

(25) 

4 . 1  T h e  s p e c t r u m  

Using the eqs. (18), (21), (24) and (25) we immediately obtain the spectrum of the 

physical Higgs bosons in the form 

~ = -40  + . ~ ,  

~ °  + m~ tan 2/3. (26) t a n 2 a  -- m ~ 0 - - m ~  

We see that now the spectrum depends only on two free parameters for which tan fl ~tnd 

m A o  can be taken as independent.  We have already noticed that vl and v2 are rea] and 

non-negative, which means that one can choose 0 < /3  < ~r/2. Furthermore from eqs.(24) 

and (25) follows that sin2~ < 0, so one can take -Tr/2 < ~ < 0. 

Before discussing the Higgs boson mass spectrum let us consider the supersymmetric 

limit. It is obtained by setting the soft-SUSY breaking parameters ml = m 2  = m 3  = O. 

However, in this limit, eqs.(25) are inconsistent with v l ¢  0 which proves the state- 

ment mentioned in Chapter 2 that in the MSSM with only two Higgs doublets soft- 

supersymmetry breaking terms are necessary for SU(2)×U(1) gauge symmetry to be 

spontaneously broken. With an additional Higgs field N the SUSY limit with broken 

gauge symmetry may exist [14]. 

In fig.1 the masses of the scalar H ° and h ° Higgs bosons as functions of m A o  for fixed 

tan/3 are presented. We see that 

~H=t: ~ Tt~W, 

mho ~ mAo ~ mHo~ 

mho <_ m z  cos 2/3 _< m z ,  

m~° + . ~ 0  = . ~ 0  + . ~ .  (27) 
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Note that the spectrum is symmetric under tan/3 ~ 1 / t a n f l  and one of the scalar Higgs 

bosons (h °) is lighter than the Z bosom The bound is reached in the case when tanl3 is 

large. In fact model building prefers tanf l  = v2/vl > 1 which is in agreement with an old 

idea that the up-type and down-type quark masses are determined by two different v's 

with the Yukawa couplings roughly equal [15]. This is especially interesting now since we 

know that the top quark mass is large. Moreover in the limit v2/vl > 5 the mass of either 

H ° or h ° (or A °) is very close to mz .  The presence of a Higgs boson roughly degenerate 

with the Z (irrespective of mAo ) turns  out to be a general feature of supersymmetric 

models with v2/vl > 1 [16]. 

These nice predicti.ons of the MSSM are modified by radiative corrections due to a 

heavy top quark [6]. In particular the relations (27) can be violated. However, for m t =  90 

GeV and tan/3 > 2 the corrections are rather small, as can be seen in fig.2 where the 

mass mho of the lightest Higgs boson is compared to the tree-level calculations [1'7]. They 

become more significant for smaller tan/3 or heavier top quark [7,8]. 

4.2 T h e  H i g g s  b o s o n  c o u p l i n g s  

The Higgs boson couplings to standard model fermions and gauge bosons are also fully 

determined in terms of tanf l  and mAo. The neutral Higgs boson couplings to the up (U) 

and down (D) fermions ~ f ]  are as follows 

I s i l l  ~ COS 
_ igm! sin~, ~in~, -i3,~ cot /3, 1, for f = U ,  (28) 

. . . . .  inc~ tan/3, 1, for f = D ,  g~f] 2row ~-~s~, ~os~, -i7~ 

and to gauge bosons ~ V V  

g~vv = igmvg u~" {cos(fl - a), sin(fl - a),  0, 1}, (29) 

for ~ = H °, h °, A ° and the standard model Higgs particle, respectively, and with m g =  

m w  for V = W o r  m y  = m z /  cosOw for V = Z .  

The charged Higgs boson coupling to fermions reads (all particles are incoming) 

ig 
g H + ~  - 2 v ~ m w  [ ' ~  tan/3(1 + 7~) + " ~  cot/3(1 - ~ ) ] .  (30) 

The Y~(p)~(p ' )  couplings are as follows (particles and momenta are incoming) 

g(;--- ;')" / sin(~ - ~), for ~ = ~0, (31) 
gZ~AO-- 2cOS0w [ cos(a /3), f o r ~ = h  °, 

i 9 cos 20w 
gz~+H-  - 2 cos ow (p - p ')~'  (32) 
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i g ( p  - p,)U {sin(a - /3) ,  cos(a - / 3 ) } ,  (33) 
gW+~H-  - - 2 

for ~o =- H ° and h °, respectively, and finally 

9(p  - (34)  
g W + A ° H -  "~- 2 

There are several comments in order. 

• Note the presence of Z H ° A  ° and Z h ° A  ° couplings whereas Bose statistics forbid 

Z H ° H  ° and Z h ° h  °, and CP-invariance forbids Z H ° h  °. 

• There is no tree-level Z W + H  - vertex in a general model with doublet and single/, 

Higgs representations. 

• The couplings for the vertices W + H ° H  - and W + h ° H  - ,  Z H ° A  ° and Z h ° A  °, Z Z H  ° 

and Z Z h  ° are pairwise complementary in the sense that if one is suppressed by the 

combination of mixing angles the other is full-strength. Likewise, if for example 

Z Z h  ° is suppressed the Z h ° A  ° is full-strength. 

* As an illustration of the suppression factor, in fig.3 we show sin2(c~-fl), relevant for 

example for Z Z h  ° vertex, as a function of rnh0 for several values of tan/3. We see 

that if the single Higgs boson production process (for instance the Bjorken process 

Z Z h  ° in e+e - [18]) turns out to be suppressed then the Higgs pair production Z h ° A  ° 

may be an efficient source of Higgs bosons [19,20]. 

• Note that for large tan/3 the couplings of the neutral scalar Higgs boson which 

is  degenerate with the Z boson are within a factor 2 equal to the corresponding 

couplings of the SM Higgs couplings. Therefore the experimental observation of a 

90-GeV Higgs boson with standard couplings will not necesarily mean a confirmation 

of the standard model [16]. 

• Another interesting feature of the large tanfl  scenario is that the couplings of the 

other neutral scalar Higgs boson that is n o t  degenerate with the Z and of the 

pseudoscalar A ° to the down-type fermions are strongly enhanced. Therefore the 

bremsstrahlung of Higgs bosons from bottom quarks or r leptons may turn out to 

be important sources of Higgs boson production [19,21]. 

• We do not discuss here couplings of supersymmetric partners. They can be found 

in the lecture by A. Bartl [5] and references therein. 

Finally let us stress again that the above discussion is correct if radiative corrections 

can be neglected. If they are important,  there are significant quantitative changes of the 

mass spectrum and couplings although some qualitative features remain similar. Moreover 
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the phenomenology becomes more involved because the Higgs sector depends on other 

parameters,  like rnt, SUSY breaking scale, mixing of squarks etc. For a discussion we 

refer to the lecture by S. Pokorski [7] and references therein. 

5 Looking for SUSY Higgs bosons 

Let us now discuss briefly the current experimental limits on Higgs boson masses and 

prospects for their discovery at present and future colliders. We will consider only e+e - 

and p p  machines because ep machines with designed luminosities are not very promising 

for SUSY Higgs search[22]. Again we neglect radiative corrections and therefore our 

discussion will be rather limited. 

5 . 1  e + e  - c o l l i d e r s  

Currently the most stringent experimental limits on the tree-level Higgs sector come from 

LEP I experiments. There are two main production mechanisms: single Higgs boson 

production via Z ---+ Z * h  ° ---* f f h  ° important  for relatively small tanfl ,  and the Higgs 

pair production Z ---+ A ° h  ° which is dominant for larger t an f l (>  3). Since in the limit 

of large v 2 / v l  the mass of A ° is close the mass of h ° the results form LEP are rather 

restrictive [23]. They are shown in rigA. Observe that these limits are valid in the MSSM 

and not in an arbitrary two-Higgs doublet model in which m A o  is not related to mho 

If the Higgs pair production is kinematically suppressed then the Higgs bremsstrahlung 

off heavy fermions gives a dominant contribution [19,21]. In fig.5 regions in the plane 

(mho , tan fl = v2/v l )  corresponding to various dominant processes for h°bb  final state in 

the MSSM are shown [21]. The notation is as follows: (1) e+e  - ~ Z ~ Z h  ° ~ h°bb ,  (2) 

e+ e - ~ Z - ~  A ° h  ° --+ h°b[~ and (3) e+e - --+ Z ~ bt) --* h°bb .  Therefore, to push the lower 

limit on rr~h0 above ~ 50 GeV the process (3) has to be taken into account. Impact of 

radiative corrections on the interplay of these processes has been also discussed in ref.[24]. 

The search for charged Higgs bosons at LEP gives a lower limit of approximately 43 GeV 

[25] but in the supersymmetric model one expects m H ~  >_ r o w .  

Recently results of new analyses of experimental LEP I data including radiative cor- 

rections have been published [26]. OPAL collaboration excludes mho < 3.5 GeV indepen- 

dently of the decay modes. The results of ALEPH collaboration are given in fig.6. They 

take m. t = 140 GeV, mstop  ---- 1 TeV and negligible mixing among stop squarks. For this 

choice of parameters mho < 41 GeV and mA o  < 31 GeV are excluded at 95% CL. Note 

that tan/3 = 1 remains allowed when mA o  > 31 GeV. If rn t  and m , t o v  are varied in their 

allowed range the limits mho  > 41 GeV and mA o  > 20 GeV remain valid. If these data 

are analysed with tree-level relations then rr~h0 = m A 0  < 44.4 GeV for tan/3 >> 1 would 

be excluded. 
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At the tree-level the MSSM model predicts one of the scalar neutral Higgs bosons h ° 

to be below and the other H ° above mz  with no restrictions on the pseudoscalar A °. 

Therefore one could expect  that LEP II would either discover h ° or disprove the MMSM. 

However, the radiative corrections can push mh0 above raz and h ° may be outside the 

discovery limit of  LEP II. Therefore more powerful e+e - colliders will be necessary to test 

completely the MSSM. 

5.2 pp colliders 

There are two dominant production processes: ghon-gluon fusion gg --+ ~a and associated 

production with b-quarks gg -+ ~bb, where ~ = h °, H °, A °. For LttC they have been 

recently analysed by Kunszt and Zwirner [27]. The production cross sections for/ t  o in the 

whole mass range and for A ° up to 250-300 GeV assuming tanf l  > 3 are larger than for the 

SM Higgs. On the other hand for the heavier neutral Higgs boson the enhancement of the 

production cross section is observed only at low values of ra~r0. In order to overcome the 

severe background the 77 decay modes have been investigated in detail. The resu]ts are 

summarized in fig.7. Discovery regions in (raa0, tan fl) plane are divided into 'standard' ,  

'good' and 'difficult'. The 'standard'  regions (grey) are those where only one Higgs boson 

can be found in 73' decay mode with SM properties. The 'good' (hatched) are where the 

heavier Higgs boson can be found at LHC. In the 'difficult' (empty) region no measurable 

physics signal was found. Fortunately this region will be well covered by LEP II, ~nd 

therefore lop machines appear as complementary to e+e - colliders. 

Our discussion of the strategies for SUSY Higgs searches is far from complete. For 

more details we refer to proceedings of many workshops devoted to detailed studies of 

physics potentials of LEP, HERA, LHC and SSC colliders. 

6 C o n c l u s i o n s  

It has been obvious for many years that the Higgs sector of the SM is most sensitive to 

interactions at mass scales higher than actually probed experimentally. Therefore many 

theoretical problems concerning the Higgs sector have emerged. Only SUSY models are 

completdy consistent internally, suffer no known phenomenological problems and allow 

to solve the naturalness/hierarchy problems with elementary Higgs bosons. We have 

reviewed the motivation for and properties of the MSSM. Supersymmetry requires the in- 

troduction of new degrees of freedom. Every particle of the SM receives a supersymmetric 

partner and at least two Higgs doublets are required to give masses to fermions. Simulta- 

neously SUSY imposes severe constraints on the otherwise enormously model-dependent 

self-couplings of the two-Higgs doublet model. At the tree level the Higgs sector is fully 
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determined in terms of only two parameters. With the heavy top quark new parameters 

make the Higgs sector more complicated. Nevertheless the MSSM suggest that some of 

the Higgs bosons are accesible to future colliders. If Higgs boson(s) are found their cou- 

plings have to be analysed to understand their origin. Thus, the Higgs sector may play a 

crucial role in revealing the nature of new physics as well as the secrets of the spontaneous 

symmetry breaking. 
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ABSTRACT 

In this lecture we analyze the Minimal Supersymmetric Standard Model 
with radiafively induced breaking of SU(2)L X U(1)y. An underlying Grand 
Unification of the strong and electroweak symmetries is assumed. The mass 
spectra of the supersymmetric particles are studied also in the case of heavy 
top quark masses and large values of v2/vi. In addition, a comparison with 
some of the existing lower bounds on these masses is given. 

1. In troduct ion  

The topic of this lecture is the analysis of the low-energy spectrum of an explicitly 
broken globally supersyrometric theory, as obtained after the spontaneous breaking of 
a local (N=I)  Supersymmetry (SUSY) [1]. 

There is no need to give a motivation for the introduction of such a theory, already 
treated in great detail in the first two lectures of this workshop. It is enough only to 
recall that this theory fulfills the requirement of protecting the scalar fields from jumping 
to higher scales, like the Planck scale Mp or a possible Grand Unification scale Mx. 
The local Supersymmetry is able to cure the problem of quadratic divergences [2], and 
the spontaneous breaking of this symmetry [3] guarantees that this feature is not lost 
after the breaking. After decoupling of gravity, i.e. once the limit Me --* oo is taken, 
we are left with a globally supersymraetric theory plus some terms of "soft breaking" 
of this symmetry. There is a very precise technical meaning of these words [4], which 
we will not investigate here. 

The theory we are dealing with is the supersymmetrized version of the most 
minimal extension of the Standard Model (SM) compatible with Supersymmetry. That 
is, a two Higgs doublet model (2HDM) considered as embedded in an underlying Grand 
Unified Theory (GUT). 

One of the reasons for the success of this theory is the observation that if the effec- 
tive SUSY breaking is O(Mz), then the logarithmic corrections to the mass parameters 
of the scalar field potential are able to induce the breaking of the electroweak gauge 
symmetry. The problem of the SU(2)L × U(1)y symmetry breaking is then "solved" by 
being linked to the mechanism of breaking of the local Supersymmetry at the Planck 
scale. The dynamic of this mechanism is unknown, but it can be parametrized by a finite 

tSupported by the Bundesministerium fiir Forschung und Technologic, 05 4HH 92P/3, Bonn, FRG. 
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number of soft breaking terms, resulting in a finite number of new free parameters to 
be added to the ones already present in the globaUy supersymmetric Lagrangian, i.e./~ 
plus the usual SM parameters. The minimal choice of only three new parameters, m, 
A and M, can be justified by a criterion of economy and makes this model, called then 
Minimal Supersymmetric Standard Model, particularly suitable for phenomenologleal 
studies. 

The rich range of possibilities offered by the supersymmetric mass spectrum has 
made this a vital model capable of evading experimental detection to date. Only a 
relatively small restriction of the allowed SUSY parameter space has been achieved so 
far through experimental searches. The recent precision measurements at LEP of the 
eleetroweak gauge coupling constants and the observation of their compatibility with 
the supersymmetric Grand Unification scenario [5], are far from providing any evidence 
for this model. Nevertheless~ they may be suggestive that there is more to it than just 
theoretical speenlation. 

In this lecture we shall analyse in detail the mass spectrum of this model and 
we shall compare it, in a few eases, to the existing experimental lower bounds on 
supersymmetric masses. We shall give particular emphasis to the unification of the 
SU(3)o x SU(2)L X r.r(i)y gauge interactions, to the corrections of the mass parameters 
during the evolution from the GUT scale ~ to the eleetroweak scale and finally to the 
mechanism of breaking of × r:(1)y. 

Several analyses of these issues exist in the literature. In the earlier papers [6~7]: 
not very high values of the top mass were considered and the supersymmetrie parameter 

was taken to be small. In a more recent series of papers I8-12], the higher constraints 
on squark and gluino masses are implemented and the possibility of heavy top masses 
is considered. As a consequence, the increase of the value of tan fl no longer allows the 
neglect of the Yukawa couplings of the bottom quark, h~, and of the tau lepton, h~. 
In some of these papers the correct constraints on the GUT scale Yukawa couplings 
imposed by Grand Unified Theories are also implemented [10-12] and some uncertainty 
in the on-shell value of the bot tom quark mass is allowed [11]. In some eases also the 
consequences of high values of tanfl are studied [10,12]. In others, particular care is 
taken in the correct trading of low-energy parameters with high-energy ones when the 
radiative breaking of the eleetroweak sector is imposed [11,12]. The correspondence 
between high- and low-energy parameters is in general not one-to-one. 

We shall discuss these issues in the following sections. The numerical results 
presented are taken from different sources in the literature and may be, at times, not 
in complete agreement because of different choices of as, sin 2 gw or m~. They have 
therefore to be taken as indicative and some variation has to be considered possible due 
to changes of these input parameters. 

The lecture is organized as follows. In section 2 we present the Lagra~agian for 
this model. Section 3 explains the procedure followed in selecting from between all the 
possible points of the supersym_metrie parameter space the ones allowing a radiatively 
induced breaking of SU(2)I, x U(1)y. In sections 4, 5 and 6, a detailed description of ~he 
one-loop renormalization effects on different sectors of the model is given. Sections 7, 8 

§ Renormalization effects between Ml~ and M x  are neglected here as well as in the existing literature. 
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and 9 deal with the theoretical predictions for the allowed range of supersymmetric 
masses and their comparison to the existing experimental lower bounds. Some conclu- 
sions will be finally drawn in section 10. 

2. Lagrangian 

The request of minimality mentioned in the introduction, strongly constrains the 
structure of the Lagrangian of our model. The requirements that only the fields due 
to the supersymmetrization of the SM are present and that matter parity is preserved, 
immediately dictate the expression of the SU(3)c x SU(2)L x U(1)y invariant superpo- 
tential: 

id c id c id c = + hDQiDdH1 hEL~EjH1 (1) W huQ~U~H2 + + #H1H2 

where the chiral matter superfields Q, U c, D ~, L, E ~, HI and / /2  transform as follows 
under SU(3)c x SU(2)L x U(1)y: 

Q - (3 ,~ ,  1/6);  v~ - (~, 1 , - 2 / 3 ) ;  
L - (1, 2, - 1 / 2 ) ;  E o - ( 1 , 1 , 1 ) ;  
H,  = ( 1 , 2 , - 1 / 2 ) ;  H2 = ( 1 , 2 , 1 / 2 ) .  

D c - (~, 1 , 1 / 3 ) ;  
(2)  

Isospin and colour indices are contracted in the usual way. The couplings hu, hD and 
hL are 3 × 3 matrices in the generation space ( i , j  = 1,2,3). 

The expression for the soft Supersymmetry breaking terms turns out to be quite 
simplified by the assumption of having a flat Ki~hler metric. At the Grand Unified scale 
Mx, they appear as: 

• A cubic gauge invariant polynomial in the complex scalar fields: 

S = mA [huQU- -OH2 + hD(2DCH1 + hELECH1] + Bm#H1H2 + h.c. (3) 

where the tilde denotes the scalar component of the chiral matter superfields 
Q, U ~, D ~, L and E ~, while for simplicitywe denote by Hi and H2 also the scalar 
components of the Higgs superfields H1 and H2. Later on, we shall often indicate 
with qL (~L, dL, . . . ,  tL, bL) the components of the three scalar SU(2)L doublets ~) 
and similarly, with j~ or qR the components of the three scalar SU(2)L singlets 
U¢ and D--% We shall also (improperly) refer to qL and jR as the "left-handed'and 
"right-handed" component of the squark j. A similar convention will be adopted 
for the scalar leptons. The coefficients A and B in (3) are c-numbers and, in the 
presence of a flat K£hler metric, the equality B = A - 1 holds. 

• A universal mass term for the scalar components yl of the chiral superfields: 

~ 2  --- - ~ , l y ~ I  ~ . (4)  

* Gaugino Majorana mass terms: 

_= + + + 
z 

(5)  



68 

where A~, A2 and As denote the two-component gaugino fields of U(1)¥, SU(2)L 
and SU(3)c, respectively. Notice that in (5), the Grand Unification constraint of 
equal gaugino masses at M x  is added to the usual requirement of minimality. 

Hence, the Minimal Supersymmetric Standard Model considered here is described 
at the Grand Unification scale by the Lagrangian 

L = W + S + AA 2 + 2~ + kinetic terms . (6) 

In order to discuss the phys ie i  implications of this Lagrangian at low-energy (i.e. 
at the electroweak scale), we need to renormalize the relevant parameters from Mx 
down to Mz.  A detailed discussion of this procedure will be given in the following 
sections. For the t ime being, for the sake of setting our notation, we shall focus on the 
expression of the scalar potential at Mz.  The correct SU(2)L X U(1)y breaking down 
to U(1),m is achieved by the vacuum 

(0); ,0,=,,,0 
<H,)= o ; <H~)= v~. 

where the last two equalities have to be satisfied by all the scalar quarks and leptons of 
the model. It is possible to redefine the phases of/ /1 and/ /2  so that vl and v2 turn out 
to be real and non-negative. The low-energy Higgs po t en t i i  along the n e u t r i  direction 
is then 

Y 2 0 2  ~d/ ' / , I  + , ] l g ° l  2 2 0 o 1 2 = - ~ ( H 1 H 2  +h.c.)+ ~(g + . 'b( IH[ I  ' IH°12) 2, (8) 

where g and g' denote the SU(2)L and U(1)y gauge coupling constants, respectively, 
and #1,~.,3 are running mass parameters. At Mx they read 

#~ = - B i n #  . 

The minimization of the Higgs potential (8) yields the two constraints 

~,,~ + , ,~  = 
(g2 -t- g'2)cos 2~ 

2V2Vl 2#~ 
sin 2fl -- v~ + v~ ,~ + ,~ " 

(9) 

( lo)  

(11) 

(12) 

By recalling that 2M} = (g2 + g,2)(v~ + v~), one obtains for (11) the more convenient 
form 

tan2n =- --(~,__~]~ = ~2 + u}12 (13) 
x~,~ ~ + M ] / 2  " 

For the above desired minimum (7) to occur we must enforce a stability condition which 
ensures that the po t en t i i  is bounded from below together with the condition that the 
origin (Hx) = <H2) = 0 is a l o c l  maximum. They read: 

z~ - . ~ . . ~  - . ~  < o ,  (1~) 
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respectively. From these last two conditions it is clear ~that the tree-level potential ,  
where #1, g2, pz take the GUT scale values provided in (9) and (10), cannot  yield 
the desired minimum. The renormalizat ion effects are however big enough to  ensure 
that  the stability and breaking conditions (14) and (15) can be simultaneously satisfied 
together  with the two minimization conditions (12) and (13). 

3. N u m e r i c a l  P r o c e d u r e  

The Lagrangian described in the previous section has still to undergo renormal-  
ization down to the weak scale. These evolution effects will be analysed in the following 
sections for each sector of the theory. In this section, following the analysis of [11], we 
shall present the kind of procedure one uses to restrict  the SUSY parameter  space to 
those regions where the requirement of radiat ive breaking of the electroweak sector can 
be correctly implemented.  

The  free parameters  present in the Lagrangian (6) are the SUSY breaking param- 
eters ra, M, A plus the supersymmetr ic  parameter  #. Gauge couplings and Yukawa 
couplings appear  also in (6). The former ones are quite well known at low energy. As 
far as the lat ter  ones are concerned, only the third generation fermions are considered 
here as massive and we take the limit of Cabibbo-Kobayashi-Maskawa mat r ix  as being 
equal to the unit mat r ix  11 ¶. The matrices hv, hD and hL are diagonal and reduce at 
low-energy to the elements ht(Mz), hb(Mz) and h,-(Mz) which can be linked to rat(Mz), 
rab(Mz) and ra~(Mz) through the vacuum expectat ion values vl and v2. The low-energy 
unknowns are then rat(Mz) and tanf l .  In principle, there is some uncer ta inty  also in 
the value of rob. As we shall see in section 5, the limited freedom for this parameter  is 
part ial ly cancelled by a fur ther  Grand Unification condition which also simultaneously 
reduces t he  range of allowed values of rnt and tan ft. For the t ime being, in this section, 
we shall neglect this complication and consider rub as known. 

Contact  has to be made  between the  low-energy and high-energy parameters  of 
the theory. This will be achieved through the renormalization group equations (RGE)  
and the two minimization conditions (12) and (13). These two conditions will enable 
us to fix two of the high-energy parameters ,  for example A and p II. 

In practice we shall proceed as follows. We shall evolve the low-energy gauge 
couplings as(Mz), sin 2 Ow and aem(Mz) to higher values of energy until  a unification 
point is found. For an effective SUSY mass at the weak scale (MsusY = Mz) and for 

 s(Mz) = 0.114, sin 2 = 0.233,  o,(Mz) = 1/12S (16) 

we obtain the following values for the unification mass and for the common gauge 
coupling constant at the unification point: 

Mx = 1.5 x 1016, axl(Mx) = 24.4 .  (17) 

¶The results presented in Fig. 1 include also some generational mixing. This and some Of the following 
figures were obtained in [11] with the aim of studying the effects of flavour change induced by SUSY. 
These results are obviously still valid in the approximation considered here. The values of the squaxk 
masses used for these figures, in fact, are not sizeably affected by the small inter-generational mixing 
elements in the squark mass matrices. 

IIA different procedure of choosing the value of A and solving for tanfl is used in [12]. 
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Figure  1: Possible configurations in the (m, M) space allowed by the conditions of radiative breaking 
of the electroweak sector, for different values of mt and tanfl. The range considered here is [m I and 
m < 150 Ge¥. Each allowed point in this plot can have up to a fourfold degeneracy in (A, g). 

A change of MsusY up to the TeV range affects mildly these results. For MsusY > Mz,  
the gauge couplings have to be evolved in two steps, according to the 2HDM-RGE up to 
the MsusY scale and then up again according to the SUSY-RGE. This type  of analysis is 
obviously a simplified one since a sharp transit ion between the two regions is assumed. 
No threshold effects are included when the energy becomes high enough to allow the 
appearence of a new degree of freedom in the evolution of the gauge coupling constants 
and of all the other  parameters  in the Lagrangian (6). The same kind of sharp transit ion 
is assumed at the scale M x .  

Once M x  and a x  are known, for a fixed choice of (rrtt, tan/~), the Yukawa cou- 
plings can be evolved up to M x  in the same way. The values obtained will be used as 
high-scale input  in the RQE for the remaining parameters  whose high-scale boundary  
conditions axe given by (10) and by: 

m~ = m 2- 2 2 2 m 2 uo m s ,  m~ m~, 

At = Ab = Ar = A . (18) 
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A formal solution for all the low-energy parameters, in terms of m, A, M and # 
and their products, can be easily obtained by inspection of the relevant RGE. Once a pair 
(m, M)  is chosen, the two minimization conditions (12) and (13) will provide solutions 
for A and p. These are in general not unique solutions. Therefore a choice of the 
four parameters (m, M,m~,tanfl)  can correspond to different possible supersymmetrie 
realizations as observed in [11] and [12]. 

Now, among the "multiple" points of the four-dimensional space (m, M, rn~, 
tanfl) the ones giving the correct realization of SUSY have to be selected. For each 
point, it has to be checked for example, that the conditions (14) and (15) are verified, 
that no parameter of the theory is growing too much during the evolution from Mz to 
Mx,  and so on. Moreover, it has especially to be checked that no further unphysical 
vacua breaking charge, and/or colour are accidentally generated. This can still happen, 
even after the removal of the points (m, M, m~, tanfl) where negative values for the 
squared masses of squarks and sleptons are obtained. The minimization of the Higgs 
potential (8) is, in fact, not sufficient to guarantee that the vacuum (7) is the 'absolute 
minimum of the full scalar low-energy potential. In practice, the minimization of the 
full potential cannot be achieved through simple means. In order to avoid dangerous 
charge and colour breaking absolute minima, one imposes further constraints on the 
allowed range of the SUSY parameters [13-15]. These conditions are only necessary to 
avoid such minima [14]. They are given by: 

2 < (19)  
2 < 3(.q  (20) 

A , m  2 < 3(m~L + m ~  +p~)  (21) 

In [15] one finds a detailed discussion on the conditions for which (19)-(21) may become 
sufficient. In general, no necessary and sufficient conditions can be derived analytically, 
and the absence of stable colour and charge breaking vacua has to be checked numerically 
point by point in the parameter space. The unphysical vacua become stable in the 
direction of those charged and/or coloured scalars whose fermion partners have small 
Yukawa couplings (compared to the SU(2)L gauge constant). This is certainly the case 
for the bot tom and tau fields, when one considers not too large values of tan ft. On 
the other hand, precisely in the limit of small Yukawa couplings, (19)-(21) become also 
sufficient. This does not apply to (19), which remains only necessary. However, for large 
enough Yukawa couplings it is possible to show that the unwanted minima lie above the 
"correct" ones. 

Finally, the existing experimental lower bounds on the supersyrnrnetric masses 
have to be considered and an analysis of the cuts that these impose on the SUSY pa- 
rameter space has to be made. Care has to be taken to use bounds as model independent 
as possible not conflicting with the main assumptions of the model we consider. These 
bounds are not taken into account in Figs. 1, 6, 7 and 8. The aim there is mainly 
to show the kind of restrictions imposed by the condition of radlatively induced elec- 
troweak breaking in the region ra < 300 GeV and [M[ < 150 GeV for several values of 
mt and tanfl. 

We close this section with a comment. It has been observed that one-loop cor- 
rections to the Higgs potential can unexpectedly play a major role [16-18]. Only for 
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certain ranges of the scale at which one stops the renormalization of the parameters 
are we allowed to neglect the one-loop corrections and use the R G  improved tree-level 
potential [16]. For the  results presented here we have not tried to determine, case by 
case, the correct range of the renormalization scale. We have, however, a posteriori 
verified the stability of our results for different choices of the effective low-energy scale 
in the M z  - 2Mz  range. A more careful procedure was followed only in the particular 
case of mt = 150 GeV and tanfl  = 40 described in section 6. 

4. Gauge Coupl ings  

We shall verify in this section that SUSY does allow the unification of the three 
gauge interactions without predicting too short a lifetime for the proton. To this end, 
we start by normalizing the hypercharge Y, in order to guarantee that the generators 
of SU(3)c, SU(2)r. and U(1)y have the same normalization once embedded in a Grand 
Unifying group. The one-loop evolution equations for coupling constants, g3, g2, gl (or 

gs, g and g ~  gr ) look  like [19] 

d ~  - -b; 5~ (22) 
dt  

where &i is defined as ai ~ ai/(4~') = g~/(16~r2), the variable t is given by ~ = l og (p /Mz)  
and bl are the coefficients of the beta function of the couplings gi. These equations can 
be easily integrated to give, in terms of the low-energy parameters as (Mz) ,  aem(Mz) 
and the Weinberg angle Ow, the following relations: 

&sl (Mz)  = a ~ l ( p ) - b 3  t 

sin a Ow a¢~(Mz)  = a ; l (>)  - b= t 

~cos 2 Ow a ~ ( M z )  = a; l ( f t )  - bl t . (23) 

The unification of the three interactions is then possible if there exists a scale 
Iz = M x ,  such that 

~3 ( M x  ) = a2 ( M x  ) = g~l( M x  ) = &x ( M x  ) . (24) 

The system (23) is a system of three equations and two unknowns, ~ x ( M x )  and 
t x  - l o g ( M x / M z )  which may not necessarily be solvable. Moreover, even if a solution 
is found, one still has to verify that it is not in conflict with the existing lower bound 
for the proton lifetime. It is easy to see from (23) that a unifying point for the three 
couplings can be found i f a s ( M z ) ,  aem(Mz) and sin 2 Ow satisfy the consistency condition 

5 sin 20w s(Mz) -  om(Mz) a2 - b3 
= (25)  

( 1 - S  sin2t~w) a s ( M z )  bl - b 2  " 

The SM does not fulfill this requirement. We recall that the one-loop expression 
for the coefficients b~ is given by 

(_ l l+4NG,  22 4 N 1 4 N 1 N \ .) (26)  
\ 3 
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where NG is the number of generations and NH is the number of light Higgs doublets. 
For No = 3 and NH = 1, the right hand side of (25) gives a value which is not possible to 
match on the left hand side, not even when the experimental uncertainty on as(Mz) and 
sin 2 8w is taken into account. A careful analysis of these issues is contained in[20] and 
in [5] from where the Fig. 2 is borrowed. The results shown in Fig. 2a are based on the 
two-loop evolution equations for the running coupling constants. The same qualitative 
features can be obtained also by simply using the coefficients in (26). 

A quick inspection of (26) shows that the unification of the electroweak and strong 
couplings cannot be achieved in the two simplest possible extensions of the SM: 

• An increase in the number of generations, for example, gives the same result as 
the SM with NG = 3. The reason is that NG enters with the same weight in all 
the coefficients b~ and cancels on the right hand side of (25). 

• An increase in the number of Higgs doublets is in principle enough to achieve 
unification. By plugging (26) in (25) one gets in fact a solvable equation in NH 
with possible solution NH ---- 7. The two-loop analysis lowers this value to NH ---- 6 
[5]. Unfortunately these values do not give viable unification points, as it can be 
seen in Fig. 2b. A generic increase of NH, in fact, while not touching the slope of 
the strong coupling, slows down the increase of ~ 1  more than it speeds up the 
falling of ~-1. If one keeps increasing the value of NH, eventually the unification 
becomes possible, but for values of energy which give too fast a proton decay. 

In contrast, SUSY introduces a drastic change in the values of the coefficients hi, 
here compared with the ones for the SM and the two Higgs doublet model (2HDM): 

( -7 ,  -19 /6 ,  41/10) SM 
(b3,b2,bl) = (-7, -3, 21/5) 2HDM (27) 

( -3 ,  1, 33/5) SUSY. 

In particular, it manages to slow down the strong coupling constant evolution and to 
achieve unification at the scale given in (17) if MsusY -- Mz and the input values (16) 
are used. The results obtained in [5] are displayed in Fig. 2c. 

Before closing this session, we should mention that there still exist other non- 
supersymmetric possibilities to achieve unification, by allowing larger groups than SU(5) 
to break to the SM in at least two stages [20]. An ordinary SO(10), for example, can 
break first to a left-right symmetric SU(3)c × SU(2)L × SU(2)rt.× UB-L at a scale Mx 
and then to the SM at MR. The unification cannot be achieved though if one tries to fix 
MR in the TeV range. On the contrary, by leaving MR as a free parameter, one obtains 
solvable equations with viable unification point for MR = 101° GeV. While SUSY still 
allows a one-step unification and can fill the so called desert between Mz and Mx in 
the lower corner, these models seem to be offering a complementary alternative. 

5. Yukawa Couplings 

The Yukawa couplings form the other sector of the model where the influence of 
SUSY is simply felt through the increased number of degrees of freedom and the value 
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Figure 2: Evolution of  the strong and eleetroweak gauge couplings in the Standard Model~ an extension 
of the Standard Model with s ~  Higgs doublets and the minimal supe~symmetric model. The input values 
of ~ s ( M z )  = 0.108 4- 0.005 and sin ~ 8w(M---S) : 0.2336 4- 0.0018 aze used here. 
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of MsusY. The evolution equations for these couplings are 

,L" 1 3 -  
2h~ -- [ ( G Y ) ~ - 6 h ~ - h ~ ] h ~  (GY), = ? a s +  3&2+i~C~l 

2~b = [ ( G Y ) b - 6 b , ~ - h ~ - h ~ ] h ~  with (GY)b = ~s+3~2+~&l (28) 

2~-  = [(GY)~. - 4h~ - 3hl]  h~- ( G Y ) ~  = 3~2 d- 9~q 

and with ~t~ - hJ47r. The convention h~ = d~t~/dt has been adopted in order to 
have a more compact form of the equations. Since the 2HDM-RGE have exactly the 
same structure as the supersymmetric ones, we give for comparison only the evolution 
equations for the Yukawa couplings in the SM 

- [ ] 9-  1,-  2ht = ( G Y ) t - ~ h  t9-2 _ ~hbs-2 _ ~,au ~ ~ (GY)t = 8&s + ia2 + ySal 
- [ ] 1 -  2hb = (aY)b-~hb9-2-ih ts-2_~ hs with (GY)b = 8 & s + i a 2 + i a l  
-" 5--2 2h~ = [(GY)~ 3 h ~ - S h l -  ~h~] h~ (GY)~ 9- 9- - = ~a2 + ~ a l  • 

(29)  
Due to the presence of only one Higgs doublet, the equations (29) differ from (28) in 
the contribution of the top quark to the renormalization of the tau Yukawa coupling. 

The nonlinearity of the equations (28) makes the increase of the Yukawa couplings 
with energy quite fast. This feature, present also in the SM and the 2HDM equations, 
is in (28) quantitatively enhanced by the presence of new degrees of freedom. Given 
the value of the coefficients of a3 and ht in (28), the Yukawa coupling relative to the 
existing lower bound on the top mass of 89 GeV [21], 

ht mt mt = - -  > - -  ,,~ 0.5 (30) 
'/}2 'V 

is still not quite competitive with the strong coupling g3~ but it becomes dangerously 
so as soon as m~ approaches 180 - 190 GeV. The requirement of applicability of (28) 
throughout the evolution of the low-energy parameters up to the GUT scale, is then the 
origin of the existence of an upper bound on the top mass in supersymmetric models. 
The approximate value of 196 GeV is obtained in the limit tanfl >> 1, but lower upper 
bounds are obtained for intermediate values of tanfl. The too fast growth of h~ while 
approaching the GUT scale Mx is also the reason why sufficiently high values of m~ 
may not give acceptable solutions of the equations (28) for tan fl too close to 1 ** 

A few more observations are in order regarding the boundary conditions of the 
evolution equations (28): 

• The Yukawa couplings entering in (28) are related to the third generation fermion 
masses and to tan fl by 

m~( Mz ) ht( Mz ) tan fl, m~( Mz ) h~( Mz ) 
(31)  

mb(Mz) - ~ mb(Mz) -- hb(Mz) " 

• *We restrict ourselves here to values of t an f l  > 1 as predicted by SUSY before the introduction of 
radiative corrections to the Higgs potential.  This modification, while allowing smaller values of tan  j3 
would not modify the discussion for values greater than  1. 
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Figure 3: Restrictions imposed upon the values of mr, mb and tanfl by the condition hb(Mx) -- hr(Mx) 
and the request of validity of perturbative calculations. 

Besides mt and tanfl  being unknown, also the value of mb is plagued by uncer- 
tainties. We can only restrict ourselves to a range of values 4.2 - 5.2 for m~(2mb). 
The values of mb(Mz) can then be obtained by QCD evolution. 

• The GUT scale values of the Yukawa couplings: while unknown, are nevertheless 
linked to each other by relations depending on the particnlax Grand Unified model 
considered. For an underlying SU(5) and SO(10) symmetry we have respectively 

h~(Mx)  = h . ( M x )  (SU(5)) (32) 

h t ( M x )  = hb(Mx)  = h . ( M x )  (SO(10)) . (33) 
t 

Both conditions reduce the region of parameter space, tanfl,  mr, mb [11,22,23]. 

We choose to impose the condition (32). For fixed values of mr, for the input 
parameters (16) and for the GUT scale parameters (17), we scan the allowed values of 
mb and tanfl  until solutions of the evolution equations (28) satisfying the unification 
conditions (32) are found. The results shown in Fig. 3 (taken from [22]) are quite 
obvious: 

• For fixed values of tan fl an increase in the top mass favours smaller values of mb in 
the phenomenologically allowed range. Higher values of hb would further increase 
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the growth of ht, as it can be seen from (28), spoiling (32) first and then giving 
values of ht not acceptable in the perturbative regime. This explains why in Fig. 3 
the curves with smaller values of mb are always above the ones with higher mb. 

On the other hand,  for fixed values of mt and for small values of tan fl, an increase 
in tan fl gives natural ly higher values of hb and of mb for hb << hr. Further increases 
of t anf l  require still higher values of hb without influencing very much mb. All 
the curves display in fact a central plateau. Moreover, smaller values of ht have 
to be used in order to mantain mt unchanged. Eventually, the region hb "~ ht 
is approached. Further increases of t anf l  can start  affecting the condition (32) 
explaining therefore the sharp drop of the curves for high values of tan ft. 

• The lower possible value of mb(Mz), compatible with a fixed value of mt(Mz) 
gives a top dependent upper bound of tan  

( tanfi)m= N mt(Mz)  (34) 
ms( Mz  ) " 

This value is obviously obtained in the limit ht ~ hb t t .  It was also shown in a 
different context [12] that  values exceeding this bound would be in disagreement 
with (14). 

These features are also implicitly studied in [11] and used for Figs. 1, 6, 7 and 8. 
It can be observed in Fig. 1, for example, that  for mt = 100 GeV, a numerical solution 
of (28) is found for tanf l  as small as 1.2, while for mt = 180 GeV, a solution is obtained 
only for tan/~ > 2. For this same mt~ values of t anf l  in the range 2 - 2.5 violate the 
condition (32). 

We conclude this section by observing that  it is quite hard to satisfy the condition 
(32) in the SM. The presence of the top Yukawa coupling in the evolution equation for 
h ,  and the lack of a3, makes the ratio hb/h.~ too big for a top mass --~ 140 GeV [24]. 

6. Higgs Potential  Parameters and SU(2)L × U(1)¥ Breaking 

As already mentioned, one of the reasons for the success of this theory was due to 
the realization that  the logarithmic radiative corrections to the mass parameters of the 
scalar potential were big enough to induce the breaking of the dectroweak sector. This 
result, initially obtained for an effective SUSY breaking of O(Mz),  remains unchanged 
if the SUSY breaking scale moves up to the TeV range. This mechanism, besides being 
appealing, has the clear advantage of avoiding additional Higgs fields and therefore of 
keeping the number of new free parameters of the theory quite small. 

It was observed in section 2 that  the GUT scale values of Pl, P2, /~s are quite 
far from satisfying the stability and breaking'conditions (14) and (15) and the two 

ltSome attempts have been made in the past to obtain an absolute upper bound on tan/3. It was 
argued in [6] and [8] that for increasing values of ht(mz) ~ hb(Mz), hb would eventually evolve to non- 
perturbative values. Some non-admissible value of hb(Mz) was then used to constrain the value of tanfl 
independently of mr. 
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minimization conditions (12) and (13). Their low-energy values can be obtained from 
the evolution equations 

( ~ )  = (GH)I  t - 3hb (E/E/)b -- h~" (E/S), 

(~) = ( G H ) ~  I - 3 h , ( E / E / ) ,  (35) 

(36) 

where the definition -2 2 /~1,2 -= Pl,2 - #~ has been used. The subscript R in p2 and Bit 
distinguishes these renormalized parameters from the high-scale ones /z and B. The 
relation (10) at low-energy then reads #23 -- --BRra#R: From this and (36) one can 
easily obain the evolution equation for #32. The gaugino and scalar masses contribution 
,o (35) and (36) are 

= + 0 )~  + ~i + ~,~'~ = ~ -  ~ ( s s ) ,  ( . , ~  . ,~  
f 

= + ~)s3 + ~,~ + .4~,~ s -  (sE/ ) ,  (.,~ ,.~ (GH)~, = 3(~2 -F ~al and 

( a H ) s  = 35~.M, + ~alM1 
(37) 

It is easy to see from the previous equations that #I decreases faster than #~ since 
its evolution is driven by the top quark, and both #12 and pl decrease faster than/z~. 
These three quantities start evolving down from the initial conditions (9) and (10) to a 
situation where 

(/~2) 2 2 2 2 ( # ~ + # 2 2 )  2 #1"#2 2 

It is still B > 0, which also implies S > 0. Afterwards, #22 decreases even further, 
while evolving down to lower energies and eventually equals ~ .  The E/~(~)L × ~(1)y 
breaking becomes possible when p~ is located between the geometrical and arithmetical 
mean o f /~  and #22 without #~ and #22 having necessarily to be negative. An example is 
given in Fig. 4 where suitable values of .4 and p are taken after having tested that they 
do satisfy the correct breaking pattern. 

A few more considerations can be drawn here on the possible values of tanfl with 
respect to the SUSY parameters: 

• If no correction to the Higgs potential (8) axe added, at the electroweak scale one 
generally ha s /~  < #12. The minimization condition (13) then implies tan/3 > 1. 

• For top masses above the existing experimental lower bound, values of tan fl too 
close to one (i.e. ht >> h~) but still compatible with the requirements of pertur- 
bation theory, may admit only a very limited region of SUSY parameters. This is 
the case of tanfl  = 1.2 for m, = 100 GeV depicted in Fig. 1. We see there in fact, 
that too big values of the gaugino parameter M would bring pl too far from/z~ 
through the indirect eiTect of the term (E/E/)t in (35). 
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Figure 4: Evolution of #~, #5 and/~, from the unification scale to the weak scale. The two figures 
correspond to the same value (m, M), but different solutions of A and #. 

Heavy enough values of m, cannot allow an arbitrary increase of tan ft. Since it 
is in this case hb ~/~t, the evolution of #~ and #~ becomes more and more similar 
limiting therefore the value of tanfl  in (13). As already mentioned, the upper 
bound (34) was also derived in [12] making use of the boundedness of the Higgs 
potential and the conditions imposed by radiative breaking. 

For hb ~ h~ the value o¢/~32 giving the correct electroweak breaking, forced to lie 
between/~ a n d / ~ ,  becomes smaller and smaller the more hb approaches hr. A 
small value of/~32 implies either a small value of/LR or a small value of BR. We 
find this second possibility for m~ = 150 GeV and tan/3 = 40 throughout the full 
range (m, M) considered, i.e. 0 < m < 250 GeV and 0 < M < 470 GeV. This 
solution is shown in Fig. 5 where for each point in the two-dimensional space 
(m, M), also the values of #R and BR compatible with the radiative breaking of 
SU(2)L × U(1)y are displayed. Negative values of M, also allowed, are not shown 
for simplicity. This situation is quite "extreme" since it requires a value of mb 
at the lower limit of the range we allow. It is nevertheless quite instructive. The 
narrow distribution of the values of Bet around zero shows, however, that some 
fine-tuning among all the parameters is needed. For this reason, the approximation 
Msusv = O(Mz) is not possible here. This solution was obtained by stopping the 
downward renormalization of squarks and gluinos at the average value of their 
masses obtained for each pair (m, M). 
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Figure 5: Possible supersymmetric realizations for the "extreme" choice of  mr = 150 GeV and tanfl -- 40. 
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7 .  G a u g i n o  M a s s e s  

Starting from this section we shall discuss the type of supersymmetric particle 
spectra one can obtain in the Minimal Supersymmetric Standard Model. We start here 
with the gaugino masses determined by the parameter M. This common parameter 
in (5) renormalizes down to three distinct values M1, M2 and M3 according to the 
equations 

d M ~  
- -  - b~ ~ M ~  ( 3 0 )  
d t  

with the coefficients b~ already given in (9.7). For MsusY -- Mz and the usual input pa- 
rameters (16), the ratios Ms~M, M2/M and M1/M are 2.79, 0.82 and 0.42, respectively. 
M1 and M2 enter in the chargino and neutralino mass matrices. M3 gives the gluino 
mass m ~  once a possible negative sign allowed for the parameter M is removed. Except 
for some particular values of mt and tanf l  and only in a limited region of m (see the 
cases mt = 100 G e V  and tan/3 = 1.9. and 8)~ no lower limit on m~ can be inferred in this 
model. A comparison with the experimental lower bound for m~ is given in section 9. 
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8. Chargino, Neutralino and Higgs Masses 

The chargino and neutralino sector is entirely determined by M,  the value of pa- 
rameter # at the weak scale, which we indicate with #a,  tanf l ,  the Yukawa couplings 
and the electroweak gauge couplings. We shall examine these three sectors in the fol- 
lowing. The results axe shown in Figs. 6 and 7. 

Chargino Mas~es: 
The relevant-terms in the low-energy Lagrangian are [25] 

1 (~r_.~l) Mc + h.c. with Mc = (40) 

where ~r± - -i)~* -i()u ~ iA2)/x/~. We denote by -+ = X1,2 the mass eigenstates for the 
Lagrangian terms in (40). By using the relation 2M~v = g2(v~ + v g) and by assuming 
M and # to be real, it is easy to see that  the chargino mass eigenvalues can be writ ten 
a s  

2 M~ + #~ + 2M~ + ~V1/(M~ + #~ + 2M~v) 2 4(M2PR 2 • 2 m~+,2 = 2 - - M~sm2f l )  . (41) 

For tan ;3 >> 1 one may expect to obtain the characteristic gaugino-higgsino spec- 
t rum. In this limit and for small #R in fact, the two eigenvalues are: 

2 2 M ~ a  
m~+ ~ 2 2M~v (42) M~ + 2M~v ' m~+ ~ M~ + . 

It was argued that  high values of tanf l ,  favoured by a heavy top mass, should 
have led to the detection of a light chargino at LEP. In practice the situation is far from 
being so simple. High values of t anf l  do imply small values of #~, but this does not 
allow us to draw a definite conclusion on p (see Fig. 5). The interplay between pR~ M2, 
tanf l  and indirectly also of all the other independent parameters of the theory~ is more 
complex for t anf l  ~ 1. In principle, the full range of masses from approximately zero 
up to the rough upper bound given by the chosen value of M is allowed for the lightest 
chargino )~+. 

Neutralino Masses: 
A similar situation holds also for the neutralino masses. The relevant term of the 

low-energy Lagrangian is in this case: 

-g%lv'  g,,,Iv  o SS-  + b.c. 

(43) 
We indicate by )~0 the four-component (Majorana) spinors obtained in terms of 

= 0 - 0  the two-components mass eigenstates X ° (i 1, 4), (~0 ___ (Xi, Xi )). As shown in Fig. 6, 
the lightest of these states, ~0 can have a mass from zero up to a maximum value in 
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general quite smaller than the corresponding maximum value allowed for mi+ in the 
same region of SUSY parameter space. 

Higgs  M a s s e s :  

The Higgs sector is the one which has received the greatest attention lately. Five 
physical scalars appear in this sector after the spontaneous breaking of SU(2)L × U(1)y. 
We denote by//1°, 2 the two CP-even mass eigenstates, by H~ the CP-odd state, and by 
H i the two charged ones. The tree-level effective potential (8) allows the following mass 
spectrum for these scalars: 

2++++ (44) 

m ~  = M ~ + m ~  (45) 

and 

, 1[ i 1 -,H;,.~ = ~ -4~, + M~ + ( . ~ ;  + Mi )2 -4 . ,~ ;Micos22Z . (46) 

At the tree-level then, the following relations hold independently of the value of taaf l  

mH~ < mH~ < mH~ , mH~ < M z  • (47) 
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Until recently, the second of these two relations was considered the main test of 
SUSY. The lack of observation of a Higgs particle below the Z mass was considered 
enough to completely rule out the model. The situation has changed drastically after 
the radiative corrections to the potential (8) have been added (more details will be 
given in the following lectures). The most affected of all the i~ve Higgs is of course H ° 
whose mass can be as small as zero if no corrections to the potential (8) are considered. 
Smaller is the effect on the remaining four scalars. Of these, the pseudoscalar is the 
one which sets the scale for TaH~ and rr~H~. We have already observed that in the limit 
ht ~ hb, p~ can be quite small while tanfl  approaches the maximum value allowed by 
Tat and Tab (34) i.e. tanflm ~ ~ T a t ( M z ) / T a b ( M z ) .  In this case, TaHO can be very light 
or nearly massless bringing therefore the values of Tall0 and TaH~ down to M z  and 
M w ,  respectively. The decrease of Tag* with increasing values of tanfl  can already be 
observed in Fig. 7, even for not so high values of tan ft .  

We conclude this section by observing that for average values of tanfl ,  as shown 
in Fig. 6 and Fig. 7, this model indicates that the neutralino has the lightest possible 
spectrum among the particles considered in this section. For the same choice of SUSY 
parameters, the charged Higgs is on average heavier than the lightest chargino, although 
the situation may be different for tanfl  >> 1. 

From the experimental point of view the possibility of imposing lower bounds on 
the masses of these particles is far from being obvious or assumption-free. Absolute 
lower bounds exist only for the charged particles, i.e. ehargino [26] and charged Higgs 
[27]. They come from LEP and they are about 45 GeV. 

As for the neutral Higgses H02 and H03, the situation has been considerably com- 
plicated by the addition of the one-loop corrections to the potential (8). The prediction 
TaHO (TaHO iS not valid anymore and the new decay H ° --* l l g H g  becomes possible. 
Moreover, the search for neutral Higgses at LEP in the two channels e+e - -* Z ~ H°Z * 
and e+e - --~ Z --* H ° I t  ° is now sensitive to the top mass and the scalar quark masses, 
in particular the scalar partner of the top quark. The regions Tagg < 41 GeV and 
TaHO < 31 GeV have been excluded at 95% CL [28] for Tat = 140 GeV, Ta~-= 1 TeV and 
under the assumption that no mixing exists between the left-handed and right-handed 
component of the stop. As we shall see in the next section, the scalar partner of the 
top quark plays a particular role in the model we discuss here and these assumptions 
are quite far from being theoretically justiiied in this particular framework. 

9. Scalar - Q u a r k  and - L e p t o n  Masses 

We start by considering the squark mass matrices. The 6 × 6 matrix of the Q = 2/3 
sector is formally written in terms of the 3 × 3 submatrices M~rLL , M~p_R and M~L R as 
follows: 

v~  vL~ (48) 
. ~  = M2 M2 u~a UI~.R 

M~L L and M ~  are the mass matrices of the left- and right-handed component of the 
up-type squarks, while M~L a contains the mass terms mixing the two components. It 
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holds that:  

M2ur~ = drag (m[,a,  m~, , ,  m~,,  ÷ - 

M~rLR = d i a g  (0, 0, (Arm + #a cot fl) mr) (49) 

where DTr~ 'R are the so-called "D-term" contributions given by 

DT~ 'n = M~cos 2fl (T~r - Qu sin Ow) • (50) 

Similarly, the corresponding 3x3 submatrices MDLL, MDRR and M~L R for the 
Q = - 1 / 3  sector are 

M'DLL : d i a g ( m ~ , , , m ~ , , , m [ s , + m ~ ) ÷  

. e  - - M~R a = d iag (  5,, 2 z IDT~] 11 , roD22 , roD3 s 
M ~  = diag (0, 0, (A~m + ~ tanZ) m~). (51) 

The "D-term" contributions for the down-sector can be obtained from (50), once 
the correct quantum numbers are substi tuted for the ones for the up-sector. The same 
rules apply for building up the mass matrices of the lepton superpartners. The scalar 
neutrino mass matr ix  is only a 3 X 3 matrix, since neutrinos are here considered massless 
and do not have right-handed components• 

A simple reshuffling of rows and columns in the matrices (49) and (51) gives a 
block-diagonal matr ix  with 2 x 2 diagonal submatrices for the first and second generation 
and 2 x 2 non-diagonal ones for the third generation. Moreover, since we neglect here 
the masses of the first two generations of quarks and leprous, the evolution of the masses 
of the first two generations of sfermions is determined by the same equations• Once we 
introduce the n o t a t i o n m ~ - m  2 --m~ - -m 2 m 2_ _ 2 m 2 m L  m 2 __2 

and similar definitions for the leptonic sector, these equations have the simple form 

• _2.. ( . ~  ~ 16 2 ~_ 

16  2 16  _ 2 

(m~) = (GG)~ 16_ M~ 4 _  i = -F~  ~ + ~ M ~  

(m~L) = ( m ~ )  = (GO) L = ~2M~ ÷ -~lM~3 2 

(Q~)  = (G~)~ = ~ M ,  ~ . (52) 

The evolution of the first two generations of sfermion masses is driven only by the 
2 = m 2 + CM(~)M 2 + gauglno masses and their low-energy value can be expressed as m 4 

DT(~).  In particular, for the input values (16) and for MsusY -- Mz,  it holds that:  

m 2- ---- m 2 + 6 . 5 1 M  2 - 0 . 3 5 M ~ [ c o s 2 f l l  
UL 
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m~ dL 

m~ 
dR 

= m 2 + 6.09 M 2 - 0.16 M ]  Icos 28[ 

= m 2 + 6.51 M 2 + 0.42 M ]  [cos 28[ 

= m = + 6.04 M = + 0.08 M~ Icos281 

= m 2 + 0.52 M 2 + 0.27 M~ ]cos 281 

= m2+0.15  M = +0.23 M~ Icos281 

= rn ~ + 0.52 M 2 - 0.50 M~ [cos 2ill (53) 

We observe here: 

* The corrections to the initial value m 2 are quite substantial. 

• The values of the coefficients CM(~) have to be considered as indicative. A change 
of as and sin 2 0w in (16), within the experimental error, induces small changes in 
in the gauge couplings contribution to the equations (52) which are only partially 
neutralized by the wriations also induced in the unification scale Mx.  Moreover, 
a change in MsusY from M z  to 2Mz can affect these coefficients up to a factor 
of 15%. Notice that for the same variation of the SUSY scale and for the initial 
value of as given in (16), the ratio m~/M changes from 2.79 to 2.61. 

• The "D-term" contributions tend to increase the values of the down-type squarks 
and slepton masses, but to decrease the value of up-type ones. The effect is not 
very big for squarks, but is quite sizeable for sleptons. For m ~ M ,-~ Mz in fact, 
the decrease/increase for up/down squarks is about 5%, but the correction can be 
up to 20 mad 30 % for scalar electrons and sneutrinos. 

The spectrum of the third generation of squarks and sleptons is more complicated. 
To begin with, the 2 × 2 submatrices which can be obtained for this generation from 
(48), (49) and (51), are not diagonal. We give explicitly the ones for the squarks of the 
third generation 

( m =- + m~ - I DT~I~ 
Q3s 

M~ = (Arm + #R cot 8) mt 

(Arm + #R cot fl) mt ) 

m~ + m~ - IDTvR[ 11 us3 

(54) 

2 2 L (Arm + #R tan 8) mb "~ m~s ~ +mb -- IDT~I 

M-: = ) (55) 
(A,m+,R tanS)- b m +m -IDT I 1 

U33 
As we can see, the non-diagonal pieces can have a quite substantial size. Moreover, 
the renormalization group equations for the diagonal terms are also different from the 
equations (52). Again, by using the notation m~3s _-- mt ~2. _-- m~ L2 , m.-2~33 = m~2R, m2D33 ---- m2bR 
and similar definitions for the leptonic sector, we can write them as 

( , ; ~ )  = ( , ; ~ )  = ( V V ) q  - ~,,~ (SS) t  - f,~ (SS)b 
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= (eG)  - = i ,  ( S S ) e  

(m'~.) = (GG)D- 2 h~(SS)b 

m 2 m _ - 2  ( S S ) .  ( ~ L ) = ( ~ . L )  = (GG)L h, 

= 2 . (56) 

The gauge terms (GG), are given in (52) and the scalar field terms (SS)t , (SS)b and 
(SS)~. in (37). The evolution down to the weak scale is driven not only by the gaugino 
masses, but also by the third generation's Yukawa couplings, i.e. mainly by the top mass 
and the value of tanfl.  The effect is that the values of the coefficients CM(~) for the 
third generation's sfermion masses are smaller than the ones listed in (53). We shall 
distinguish here the two situations hb << he and h~ ..~ he. 

h~ << he 
In the specific case of me = 150GeV and tanfl  = 3 (the condition hb << he is 

here certainly verified), the decrease of the coefficients CM(q) with respect to the ones 
for the first two generations is about 15 ~ and 30 ~ for m 2-- = m -2 - m  -2 and 2 Q~s eL bL m~R' 
respectively. It is negligible for m- 2 ra 2 - and m 2 - The conclusions which can be drawn 

b R ' -t- L ,,r R • 

for the stop, sbottom and stau mass eigenstates are therefore the following: 

Both left-handed and righi-handed diagonal terms in the stop matrix (54), are 
below the corresponding values of the up-type squarks of the first two generations. 
As already observed, the decrease of the coefficient CM(tR) is twice as much as 
the decrease of CM(tL) (notice the factor of two multiplying ht 2 in the evolution 
equation for 2 m~R ). Moreover, the off-diagonal terms in (54) are in this case quite 

big. The effect is that one of the two stop mass eigenstates, which we call tl 
has a mass smaller than the entry m~R in (54). On the contrary, a partial/full 
compensation of the difference between the value of m~z in (54) and the masses 
of the remaining four up-type squarks is obtained for the second mass eigenstate 
tz. One mass eigenstate is then either comparable to the almost degenerate four 
up-type squarks, or moderately below them, according to the value of mt and 
the region of SUSY parameter space considered. The second one tl,  can have a 
much smaller mass, in principle even compatible with zero as shown in Fig. 8 for 
mt = 100. For some of the points already excluded in Fig. 8, the off-diagonal 
terms of the matrix (54) can be big enough to drive m- z to negative values. The 

t l  

contribution of mt to the diagonal entries of (54), up until now neglected, has 
the effect of reducing the splitting between the two stop mass eigenstates. For 
increasing values of  mr, but still such that h~ << ht, the diagonal terms in the 
matrix (54) grow faster than the off-diagonal ones. Notice in fact, that no values 
close to zero are present in Fig. 8 for m t =  180. 

As far as the sbottom mass matrix is concerned, practically no splitting is intro- 
duced by the off-diagonal terms in the matrix (55). Since hb << ht, the heavier 
of the two mass eigenstates, ha, is roughly the right-handed component bR, nearly 
degenerate with the other four down-type squarks of the first two generations. 
The other one, which we indicate with bl, is smaller. The size of the splitting of 
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these two eigenstates depends of course on the value of m and M. By inspection 
of Fig- 8a and 8b, we can conclude that as far as hb << ht, t l  is on average lighter 
than bl. 

The third generation of sleptons is a replica of the first two. The effect of the 
2 and m~i , is in fact almost negligible com- Yukawa coupling h,  in the RGE for m L 

pared to the gaugino contribution. The lightest mass eigenstate ~1 is practically 
the SU(2)L-singlet component ~R. 

hb ~" ht 
In this case, the. decrease of all diagonal entries of both stop and sbottom mass 

matrices is similar. For rat = 150 and tan/3 = 40, the gaugino contribution to these 
masses decreases with respect to the contribution it gives to the first two generafion's 
squarks masses of about 25-30 %. In the leptonic case this decrease is sizeable only for 
ra2 (roughly 20 %) but negligible for ra~.  The observations one can make in this case 

q'R 

are: 

The off-diagonal terms are now quite relevant in both stop and sbottom mass 
matrices, either for the presence of m t  or for the presence of tan ft. The same 
considerations made before for the t hold here also for b. Moreover, since the 
sbottom matrix does not have a direct dependence on m t  in the diagonal terms, 
bl can be in principle smaller than tl for heavy top masses and for big enough 
tan~.  

Also in the case of "~, a large splitting between the two mass eigenstates can be 
introduced by big off-diagonal terms in the mass matrix. The different renormal- 
izafion pattern present in this case can further enlarge this splitting. Moreover, 
due to the smaller sensitivity to the value of M ,  the lightest stop ~1, can be lighter 
than tl and b~ [12] in some regions of the SUSY parameter space 

Some interesting phenomenological implications which can be obtMned for large 
values of tan/3, are discussed in [12]. 

As for the case of chargino, neutralino and Higgs bosons, no experimental search 
has brought so far any evidence for the existence of squarks and sleptons. The best lower 
limits on the slepton masses coming from LEP [26] exclude values of about 43 GeV for 
photino masses up to 20 - 30 GeV. The assumption made in these searches that the 
sleptons decay directly to the lightest supersymmetric particle (LSP), assumed to be 
the photino, are obviously acceptable for these values of masses. Moreover, a possible 
splitting between the left- and right-handed components 1L and [R is also considered in 
these analyses. The situation is more complex as far as the bounds on squarks and gluino 
masses are concerned. The recent CDF limits [29] rn~ > 150 GeV (independently of rag) 
and raq > 150 GeV (for ra~ < 400 GeV), rely on at least two assumptions not supported 
by the Minimal Supersymmetric Standar Model. One of them is that all the squarks 
are considered as degenerate, the second is that squarks and gluinos are supposed to 
decay directly to the LSP withouth intermediate decays to charginos or neutralinos [30]. 
Obviously a more complete analysis which is able to relax these two assumptions, cannot 
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be performed without specifying a particular theoretical framework. An attempt in this 
direction is made in [31] where the study of these cascade decays, as predicted by the 
Minimal Supersymmetric Standard Model, allows one to estimate that the CDF limits 
should be lowered by about 30 GeV. 

10. Conclusions  

In closing this lecture we would like to point out that the predictive power of 
this model strongly relies on the minimal choice of parameters made at some high- 
scale and on the fact the electroweak breaking can be induced by radiative effects. The 
possibility of reducing to only four the number of new parameters to be introduced in the 
theory, is certainly not theoretically motivated and may be considered as a drawback 
of this model. On the other hand, we have shown through a few examples that the 
experimental searches for supersymmetric particles are far from being assumption-free 
and are in many cases already inspired by this model. It might also become harder and 
harder to perform searches of supersymmetric particles heavier than the ones excluded 
up to now in a model-independent way. Moreover, in spite of its small number of 
parameters, this model still offers a very rich spectrum of masses and only a serious 
threat from experimental side could convince us to dismiss it. 
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Abstract 

Supersymmetric models with R-symmetry predict a stable lightest super- 
symmetric particle (LSP). The relic mass density of the LSP in the standard 
big bang model is discussed. For the minimal supersymmetric model the 
constraints on the mass spectrum from the new LEP data imply that this 
density is negligible, unless the LSP would be heavy. 

1 I n t r o d u c t i o n  

The main achievements of the standard big bang model of cosmology (see [1-2] 
for reviews) are the explanation of the microwave background radiation and the 
abundances of the light elements. The theoretical description of both phenomena 
starts with an equilibrium state in an energy range where the particle spectrum 
and the interactions are well understood and traces the development of the particle 
densities in the expanding and cooling universe by rate equations. It is quite natural 
to extend this method in order to find the cosmological implications of hypothetical 
particles and interactions. If the strength of the latter one are comparable at least 
with the weak interaction, the particles will be in equilibrium down to temperatures 
of O(1 MeV)-O(1 GeV). The initial conditions for the calculations are therefore not 
affected by earlier cosmological events, such as the weak phase transition or details 
of inflationary scenarios, which are less understood. The bounds obtained by these 
calculations are therefore reliable. The main uncertainty in the above mentioned 
temperature interval is due to the unknown details of the presumed quark-hadron 
transition at temperatures between (150 -400)  MeV. 

Such investigations have especially been carried out for supersymmetric theo- 
ries since they predict a particle spectrum and interactions which are sufficiently 
constrained by the symmetry. 
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In the minimal supersymmetric extension of the standard model MSSM [3] it is 
the most economical way to introduce an R-parity in order to rule out baryon and 
lepton number violating dimension-four operators which would lead to an unac- 
ceptably high proton decay rate. The particles of the MSSM have a multiplicative 
quantum number R under this discrete symmetry, which can be written in terms 
of the baryon number B, the lepton number L and the spin J as 

R = ( -1 )  2J+3B+L. (1.1) 

Since all supersymmetric partner particles have R = - 1  and all standard model 
particles have R = 1, R parity forbids the decay of the lightest supersymmetric 
particle (LSP). In the standard big bang scenario, the LSP was in equilibrium in 
early epochs of our cosmos. A reduction of the number of LSPs can only proceed 
via pair annihilation, which however becomes more and more unlikely in the ex- 
panding universe. The calculation of the present energy density can be performed 
by integrating the detailed rate equation for the LSP [5-8]. Since this energy den- 
sity is constraint by the lower bounds on the age of the universe, which come e.g. 
from radioactive dating methods, we can get constraints on the supersymmetric 
model. On the other hand, a neutral LSP with a sensible contribution to the en- 
ergy density of the universe could account for the so called dark matter problem. 
Also galaxy formation models with weakly interacting massive particles (WIMPs) 
are nowadays preferred. 

If the LSP would be charged or strongly interacting it would condensate with 
ordinary matter and super-heavy isotopes should be found. The constraints on the 
latter ones [15] exclude this possibility. Unbroken R parity therefore implies that 
the LSP is weakly interacting and should be detected in collider experiments by 
missing energy signatures. One should keep in mind that the introduction of R 
parity is not compelling. Other discrete symmetries which avoid too fast proton 
decays do not imply a LSP [4]. Relaxing R symmetry would invalidate the above 
chain of argumentation. 

Also tile gravitinos can have cosmological implications even if they are not the 
LSPs. Since they couple only gravitationally, they went out of equilibrium at a 
very early time when the temperature (cf. sec. 3.4) was of order O(10 tz GeV), 
i.e. without being suppressed by a Boltzmann factor like in (4.3). Most likely the 
gravitino number density was in the following diluted by an inflationary expansion 
and recreated hereinafter during the reheating period, which is caused by the ther- 
malisation of the vacuum energy. That is the initial abundance of the gravitino 
density depends on the reheating temperature of the assumed inflationary scenario. 
Because of this uncertainty in the contraints coming from the gravitino, we like to 
sketch the corresponding arguments only briefly in the following and devote the 
main part of the time to the contraint on the relic density of the WIMP. 
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103 (1 TeV/m3/2~ sec the en- to its relatively long lifetime T = 4.2 × ] 3 Due 
ergy density of the gravitino or its decay products, respectively, can invalidate the 
successful nucleosynthesis predictions and/or distort the distribution of the back- 
ground radiation, if the gravitinos where copiously reproduced after the inflation. 

One possibility to avoid these difficulties is to make the gravitino so heavy that 
it decays before nucleosynthesis, which implies m3/z > O(10 TeV) [9]. The first 
effect of the presence of the gravitino mass density on nucleosynthesis is to en- 
hance the Hubble expansion roughly at the cosmic time t "~ .7 sec, which leads 
to a higher 'freeze out' temperature (cf. sec 3.4) of the neutron to proton ratio 
(N~/A~) = exp(- (m~ - mp)/T). This will lead to more neutrons at the decou- 
pling temperature. Since practically all neutrons which did not freely decay in the 
following are incorporated into 4He this leads to an higher 4He abundance. In [7] 
the restriction on the latter one was used in order to refine the bound of [9] to 
m3/2 >_ 19 TeV. In this scenario the gravitino decays when it dominates the energy 
density as a non-relativistic particle. The corresponding entropy increase will wash 
out any baryon asymmetry, which was produced before. 

If the gravitinos are lighter rn3/2 = O(10 GeV) - O(1 TeV) they will survive 
until the synthesis of the light elements starts roughly at t "~ 150 sec and beyond 
that. In this case the authors of [10] have found that the strongest bound on the 
gravitino number density comes from the photo-dissociation of of 4He into deu- 
terium and 3He, by cascades of energetic photons triggered by the decay products 
of the gravitino. This bound implies that the reheating temperature has to be less 

8 - 1  then TR < 2.5 × 10 GeV (mz/2/100 GeV) . This low reheating temperature did 
not allow for the production of a sufficient baryon asymmetry in the framework of 
the corresponding supersymmetric GUT. However since it was noticed that non- 
perturbative baryon, lepton and CP violating processes can generate the baryon 
asymmetry below the weak phase transition ([11] and ref. therein), this bound on 
Tn became doubtful. 

Finally there exists the possibility that the gravitino is the LSP. If there were 
no suppression by inflation the gravitinos would have to be rather light m3/2 < 
1 KeV [12], otherwise they would contribute to much to the present day energy 
density. The next lightest SUSY particle will decay into the gravitino with a 
lifetime comparable to the one above. But this causes not as serious problems 
with nucleosynthesis and background radiation because the number density of this 
WIMP is sufficiently Boltzmann suppressed (cf. sec. 4.1). 

Problems similar to the gravitino problem but harder to avoid occur in super- 
gravity theories, where the supersymmetry breaking is performed spontaneously in 
the hidden sector. This is because the hidden sector contains light fields which cou- 
ple only through gravity. When the latter one become non-relativistic they develop 
coherent field oscillations like the 'invisible axion' [13]. Their energy density then 
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falls like p c< R -3.  This occurs when the energy density of the matter  is still radia- 
tion dominated pm ~x R -4, such that  the energy density of the 'hidden field(s)' will 
overcome the one of the ordinary matter  and contribute too much to the present 
day density. This so called Polonyi problem has up to now no convincing solution 
see ([14] and ref. therein). 

We begin our discussion with a short review of the dark matter  problem. Es- 
pecially we will see whether a weakly interacting particle WIMP can play a role 
as a dark mat ter  constituent in the universe. In section three we explain the basic 
ingredients of the standard big bang cosmology. We will discuss in some detail the 
age constraint on the density of the LSP. The methods to calculate the relic density 
of the LSP are described in section four. Recent results on the relic density of the 
LSP in view of the new LEP data are given at the end of section three. 

2 D a r k  m a t t e r  in t h e  U n i v e r s e  

When astronomers study the dynamics of systems on scales greater then a few 
hundred pc's they are regularly led to the conclusion that  either Newtons law of 
gravitation is violated in the regime of low acceleration [16] or that there must be 
a large amount of matter,  which is not associated with light [17]. Adopting the 
latter interpretation one observes that  the larger the amounts of dark matter is the 
larger the scale of the investigated system, see figure 1. 

Oort reported in 1932 [18] that  roughly half of the matter  in the galactic disk 
in the vicinity (kpc) of the sun must be hidden. This fact was obtained by fitting 
gravitational potentials in order to explain the observed density distribution and 
the velocity dispersion perpendicular to the galactic disk of so-called tracer stars. 
More recent investigations [19] along the same lines confirm that within layers of 
scale heights less than 0.7 kpc above the galactic plane the ratio between visible 
and dark matter  is 0.5 _ Pdark/P,is ~_ 1.5. Estimates for the dark matter  in the 
elliptical galaxies and the bulges of spiral galaxies using stellar dynamics have also 
been performed [20] and references therein. 

On the scale of tens of kpc's one observes [21] that  the orbital velocities V0 
of radial motions around spiral galaxies are roughly constant from the edges of 
the galaxies, where the light effectively ceases, up to the far outer regions, where 
the brightness is only one percent of the central region. These rotation curves 
suggest by applying simply Keplers 3rd law GM(r) = v2r that the galaxies are 
surrounded by a roughly spherical halo of dark mat ter  with a radial mass density 
distribution M(r)  c< r. To calculate the total mass contribution of the dark matter  
one has to estimate the radius of the halo. This can be done using the upper 
observational bound on the the local escape velocity. Likewise the kinematics of 
the Magellanic cloud, local group timing or the kinematics of satellite galaxies [20] 
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can be used to es t imate  this radius, see figure 1. Using an averaged number  density 
for the galaxies one gets for the  mass contr ibut ion of the dark mat te r  in the whole 
universe (Fti = pi/pcrlt), cf. (3.8) and (3.7), 

~dark ~ 0.1 > 10 f~,,i~, 

i.e. its mass represents 10 % of the critical mass of the  universe, while the visible 
mass contr ibutes only one percent  to the critical mass. 

On the next scale, 100 kpc's  to 1 Mpc, one est imates the mass of groups of 
galaxies using the virial theorem [22], which states that  one has for the  t ime aver- 
age of the kinetic energy K and the  potent ial  energy W : 2(K)ti,~ + (W)tim~ = O. 
In practice one can measure by blue-red-shift de terminat ion only the momenta ry  
velocity in the line of sight. If the system is well relaxed one can use 2K + W ~ 0. 
Assuming the masses of galaxies in groups are typical, one gets from this observa- 
tions mass contr ibutions f rom the galaxies in the range of 

0.1 < a < 0.3. (2.1) 

On the scales of ten 's  of Mpc's,  distortions of the Hubble ttow [24], e.g. due to 
the mass of the Virgo cluster, can be measured and used to determine the averaged 
mass to light ratio of the system (see Figure 1). 

On cosmological scales one uses the relation between the number  of galaxies 
Nga, and the red-shift (z = ($( to) / (A( t l ) ) -  1, cf. (3.11)) 

i ~/v~o, [ _~ ] 
z - -~dzd~ = (H°R°)-3nc( t )  1 - 2( -t- 1)z + . . .  , (2.2) 

in order to de termine  flo. This way Loh and Spillar [42] have obtained f~o = 0 -q +l.a 
• - - - 0 . 7 "  

The problem here are the assumptions about  the galaxy development at very large 
red-shifts. In [42] no(t) ,~ coast, was used, but  see [43]. 

Likewise the relation between t rue luminosity distance dL and the red-shift [1] 

d~ = Hol[Z + ½(1 - -~)z2 + ...] (2.3) 

could in principle be used to de termine  1 fl0. However the size of the errors here 
allow only to state tha t  fl0 is roughly of order 1. 

Equat ion (2.3) is used to de termine  the present value of the Hubble constant 
H0 := (R(t)/R(t))[t=to. Due to the difficulties in fixing the true luminosity distance 
dL of the  cosmological objects it is likewise badly known [30] 

Ho - 100 h km sec -a Mpc -a, (2.4) 

I Here and in the following the subscript 0 indicates the present value of the corresponding 
quantity. 
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Figure 1: A survey of dark mat te r  in the universe at different scales. The mass 
to light ratio M/L is normalized to the mass to light ratio of the sun. Using the 
averaged luminosity density in the visible spectrum j0 = 1.7 × lOSh(Ls,,,~Mpc-3),,i,, 
the present density can be expressed as f~0 = (M/L)(jo/pc) ,,~ (1/1600h)(M/L). 
The different systems are sketched in the text. 
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where 
0.4 < h < 1.0. (2.5) 

The baryon to photon ratio 71 is a crucial parameter for the formation of the 
light nuclei. From the comparison [25] between the theoretical nucleosynthesis 
calculations [33] and the observed abundance [27] of light nuclei one can infer a 
constraint on the baryon contribution to ~0: 

0.015 < ~Bh 2 <_ 0.026. (2.6) 

The bounds for the various contributions to the density of the universe on 
different scales are depicted in figure 1. 

As far as baryonic mat ter  is concerned we see two things. There must be some 
amount of baryonic dark mat ter  in order to explain the difference between the 
lower bound of (2.6) and the amount of visible matter.  At the scales of galaxies 
a11 the dark mat ter  can be baryonic. However there exist arguments pro [28] and 
contra [29] this possibility. If we follow [29], then the LSP would be an interesting 
candidate for halo dark matter.  It has also turned out that  structure formation 
models can better explain small structures in presence of massive weakly interacting 
particles so called cold dark mat ter  [31]. 

A weakly interacting massive particle like the LSP would cluster at scales less 
then 10 Mpc, where it could explain the halo dark matter,  if it's energy density is 
roughly one quarter of the critical density. It can not make up for the mass differ- 
ence between the mass estimates below this scale and higher mass estimates on the 
cosmological scale. Especially if one believes for theoretical reasons that ~0 = 1 
one needs rather so called hot dark matter  like light m~ ~_ 90h 2 eV neutrinos which 
are relativistic during structure formation and do not cluster with galaxies. Alter- 
natively one could introduce a cosmological constant, which may also be attractive 
in order to solve the age constraint, see section (3.2). 

If the LSP particles were present in our galaxy there would be indirect methods 
to detect them. The most common scenario is that  LSP's annihilate in the sun, 
which would lead to an significant 250 MeV neutrino flux [32]. If the s -neu t r ino  
would make the halo mass then the limits on this flux from proton decay detectors 
imply m < 0(3  - 5) GeV. 

Furthermore, direct detection experiments which limit neutrinos also limit s - 
neutrinos to be lighter then O(12 GeV) [34]. The LEP data on the decay width 
of the Z imply for s -neu t r inos  m > 0(30) GeV which rules out the s -neu t r ino  as 
a dark matter  candidate. 
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3 B a s i c s  o f  t h e  t h e o r e t i c a l  d e s c r i p t i o n  o f  b i g  
b a n g  c o s m o l o g y  

3.1 The Einstein equations 

The cosmological principle is an assumption - -  the validity of which is confirmed 
by the highly isotropic microwave background radiation and the radio galaxy dis- 
t r ibution on very large scales - -  tha t  the  three dimensional spatial subspace of our 
cosmos is at all t imes homogeneous and isotropic, i. e. it has the maximal  number  
(6 = 3(3 + 1)/2) of possible isometrics. These symmetr ies  restrict the freedom of 
the metric which determines the intrinsic geometry of our cosmos. So one can write 
it e.g. in the Robertson-Walker form 2 

{ } dr 2 
ds2 = g""dx~'dx" = dt2 - R2(t) 1 ~-£r 2 + r2d02 + v2 sin2 0d¢2 " (3.1) 

Here the only free parameters  are the t ime dependent  scale factor R(t) and k, 
which take the values ( - 1 ,  0, 1), indicating whether  the scalar curvature of the 
spatial three space T~(3) = 6k/R2(t) (constant all over the spatial subspace) is 
negative, vanishing or positive, respectively. 

The  Einstein equations can be wri t ten in the form 

1 
G , ,  := R,~ - ~g ,~R  = 87rGT~ + Ag~,  (3.2) 

where R~. is the Ricci tensor, T~ is the scalar curvature,  T ~  is the energy momen- 
t um tensor for the mat ter ,  and we have allowed for a cosmological constant  A. A 
natural  candidate  for the energy m o m e n t u m  tensor of the mat te r  which is compat- 
ible with the symmetr ies  of the metr ic  is the one of an incompressible, frictionless 
fluid. In comoving coordinates it reads T ~  = diag(p'~,p~,p'~,pm). Here p'~ is the 
energy density and pm is the pressure of the mat ter ,  respectively. Inserting this 
into (3.2) one obtains for the  (time, time), (space, space) components  

R2 k 8~rG m i (3.3) 
R-Z+R-Z - 5 e + ~ ,  

2 ~ + ~ +  R: - S~Gp~+A' (3.4) 
while the other  components  vanish identically. We may  also use the conservation 
of the full stress energy tensor, including the vacuum contribution,  T;~ ~ = 0, which 
reads 

d(en ~) = -pd(~). (3.5) 
2We use the signature of the metric g~,~ = diag(+, - ,  - ,  - ) .  In the book of S. Weinberg [1] 

the signature is g, ,  = diag(-, +, +, +). 



101 

Only two equations among (3.3),(3.4) and (3.5) are independent,  because contract- 
ing two times (~, v and ~, it) the second Bianchi identity ~yet~c(,~p)R~u~;p = 0 
yields G"P;, = 0, i.e. the energy momentum conservation is a consequence of (3.2) 
and the Bianchi identity. Usually one chooses the energy conservation (3.5) and 
the so-called Friedman equation (3.3) as the independent equations. We define the 
critical density by requiring k = 0 in (3.3) this yielding 3 

3H°2 10-4~h 2 10-29h2 c g  (3.7) P~ = 8 rG  = 0.81 × GeV 4 = 1.88 × ~, 

where we have used (2.4). Introducing the ratio 

a " -  L (3 8) 
Pc 

(3.3) is often rewritten as 

k A 
H2R----- ~ = ~t - 1 -t- 3H0~. (3.9) 

A useful auxiliary equation is obtained by solving (3.3) and (3.4) for R: 

= -4 c(p m + 3p m) + h .  (3 .10)  

The scale factor R(t) is positive by definition. Also the energy density and the pres- 
sure of the mat ter  is positive. Neglecting the cosmological constant for the moment,  
we learn from (3.10) that  R(t) is a convex function. Considering the kinematics of 
particle motion in the background of (3.1) one obtains [37] for massless particles 
emit ted at t ime tl and detected at t ime to that  the wavelength behaves like 

~(tl) R(t , )  
_ - -  (3 .11)  

~(to) R(to)" 
Since today we observe a red shifted ()~(to) > ~(tl)) spectrum in the light of distant 
galaxies we have/~( t )  > 0. So R(t) is a convex curve with a nowadays positive 
slope, which means that  the age to - tl of the Universe counted from the initial 
singularity R(t l )  = 0 (one defines tl = 0) is finite and bounded from above by 

1 
to < R(t) t=to =: ~oo" (3.12) 

3ttere we use so called natural  units by setting kBou~ma,n = h/(27r) = c = 1 and keeping 
as fundanmntal uni t  only the energy in GeV,MeV,... Conventional units can be restored by 
remembering 

1 GeV ~1.1605 x 101aKelvin 
1 GeV ~-1.7827 x 10-24g (3.6) 

1 GeV -1 ~-6.5822 x 10-25sec 
1 GeV -1 -~1.9733 × 101%m. 
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3 . 2  M a t t e r  a n d  v a c u u m  c o n t r i b u t i o n  t o  t h e  e n e r g y  m o -  

m e n t u m  t e n s o r  

An epoch of thermodynamic equilibrium can establish an equation of state p = p(p), 
by which one can solve (3.5) for p(R). Explicit solutions R(t) can then be obtained 
by integrating (3.3). E. g. for ideal gases of bosons ( - )  or fermions (+) in kinetic 
equilibrimn the Bose-Einstein or Fermi-Dirac phase distributions 

1 
f ( E )  = e x p [ ( E -  #)/T]-4- 1 (3.13) 

provides us with explicit expressions [38] for the number density n(T),  the energy 
density p(T), the pressure p(T) and the entropy density s(T): 

/5 n(T) = g I(E)IgIEaE,  (3.14) 
271" 2 

p(T) = g f(E)lp~E2dE, (3.15) 2~-2 

/5 p(T) = g f(E)lp73/2dE, (3.16) 
6~r 2 

s(T) = p(T) + p(T) - #n(T) (3.17) 
T 

Here/z is the chemical potential. The necessary conditions for such an epoch to 
occur is that the interaction rates F driving the particles towards equilibrium are 
large compared with the Hubble expansion rate H = ~. Whether this is a realistic 
assumption will be discussed in some detail in section (3.4). 

Simple examples of matter content can be obtained by using the high relativistic 
and non-relativistic limits of (3.15) and (3.16): 

Radiation pR = (1/3)pn =~ pn c~ R -4, (3.18) 

Non - relativistic Matter p~r = 0 =~ Par c¢ R -3, (3.19) 

Vacuum energy p .~  = -p.~c = 8-~ =~ p~c c¢ const. (3.20) 

The last case corresponds to an universe without matter but a non-vanishing cosmo- 
logical constant. Inserting (3.20) into (3.3) leads to g = ( 8 r G p ~ J 3 )  (1/2) = coast 
and hence an exponential growth of the scale factor R(t) ~ exp(Ht). The space de- 
fined by (3.1) with this scale factor has a ten-parameter group of isometries which 
is the maximal number in four dimensions (10 = 4(4 + 1)/2). It is called de Sitter 
space. Such an epoch with a large value of A is probably realised during inflation 
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[39]. It solves the horizon problem and leads in a natural way to a fiat universe [39]. 
This explanation for fl = 1 is especially desired, because the present day universe 
seems to rather flat I£ - 1] = O(1), while ~ = 1 is an unstable fix point of (3.9). 

Today we live as far as the known contribution to the energy momentum tensor 
is concerned in an universe which is dominated by non-relativistic matter,  i.e. 
p m =  0. The original motivation for introducing the cosmological constant was to 
obtain a static solution in the case of a mat ter  dominated universe with k = 1. 
This is done by adjusting the cosmological constant such that  the right-hand-side 
of (3.10) vanishes p m =  (A/(4~rG)) = 2p~c and by adjusting the radius so that  
(3.3) states that  (i~/R) = 0 vanishes, i.e. R = (1/v/'A), one gets the desired static 
solution. 

The observed Hubble expansion contradicts a static solution. Nevertheless a 
small cosmological constant can be tolerated. See (Weinberg 89) [40] for a review 
of the cosmological constant problem. From direct observations in the solar system 
the strictest bound comes from the observed advance of Mercury's perihelion [41]. 
It states p,~c := (A/81rG) = 2.31 × 10 -36 GeV 4 or flv~ = h-2 2.8 × 1016. Bounds 
from the global dynamics are ten orders of magnitudes more restrictive. By relating 
the number of faint galaxies to their redshift Loh and Spillar [42] have found a very 
stringent bound ~ < 0.1. This was reconsidered in [43], proposing new models 
for the galaxy evolution at very high redshifts with the result that  the best fit 
to the data was at g/,~u~ _< .1 and ~ , ~  ___ 0.5 - 1; f l ~  = 0 is also consistent 
with their data. In [44] Durrer and Straumann concluded from the development 
of fluctuations in a k = 0 cold dark mat ter  universe that  ~ . ~ <  .7. From the 
statistics of gravitational lenses the authors of [45] inferred that  f l .~  < .9. 

3.3 T h e  age constra int  on  n0 

As mentioned in the introduction, the upper bound on the relic density comes from 
a lower constraint on the age of the universe. The dating methods which concern us 
here come from estimating the age of the oldest stars by stellar evolution models and 
from radioactive dating methods. The initial conditions for the 4He and metallicity 
abundances are predicted by nucleosynthesis calculations. These methods predict 
an age bound of the universe ranging from 10 × 109 yr8 <_ to <_ 2 0 ×  109 yr8 
[46], which has to be compared with the dynamical age of the universe in order to 
constraint ~0. 

Using P/Po = (R/Ro)  -3 for non-relativistic mat ter  (3.19) or p/po = (R/Ro)  -4 
for radiation (3.18), respectively, we can rewrite (3.3) as 

{ 8 ~ G  ( ~ )  2 A Non-relativistic matter  

"--'~-p0 radiation. 
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Here we include the  possiblity of a cosmological constant  only in the mat te r  domi- 
nated area, since in the radiat ion dominated  phase the  energy densities are anyway 
so high tha t  one can neglect A. Using now the definition of the critical density pc 
(3.7) and of no = (po/pc) we can rewrite this as 

( R )  { H°x/1-n°-~"c+~°(R°/R)+Ft~c(R/R°)2N°n-relativisticmatter 
~00 = HoV/1 - no + ~o(Ro/R) 2 radiation, 

(3.22) 
where n.ac = A/(3H02). The  equat ion for the non-relativistic mat te r  case for ~2~ac = 
0 can be intergrated in a closed form from R = 0 to R = Ro 

_ no [arccos(2 ~2o 1 -  1 ) -  F/o < 1 

= 5Ho 1, n0 = 1, (3.23) 

no [2 /1 - n o -  arccosh(2 no'  - 1)] no > 1 
/ / °1  2(1 - ~2)3/2 Lg/o 

The  same calculation for a radiat ion domina ted  universe yields 

v 0-1 
to = H o  1 ~oo-  1 " (3.24) 

For fixed H0 the present age of the universe decreases in all cases as no increases. 
A conservative lower bound is to > 12 x 109 yrs. The  one which is favoured by star 
development  models states to > 15 × 109 yrs. Assuming both  theoretical prejudices 
n0 = 1 and A = 0 to hold, these age contraints imply h < 0.54 and h < 0.43, 
respectively (cf. (2.5)). Reconciling larger values of h with a flat universe seems 
only possible if one introduces a cosmological constant.  In table 1 we list constraints 
on ~'/o assuming these bounds for the actual range of the  Hubble parameter  h, 
taking into account the possibility of a nonvanishing cosmological constant  with 
values which were discussed at the end of section (3.2). The  latter cases are known 
as Lemaltre models. 

Integrat ing the  ma t t e r  dominated  case in (3.22) from R(0) = 0 to R(t) and 
expanding the result for (Ro/R(t)) > >  flo 1 one obtains 

t ~-- ~ H o l a o  1/2. (3.25) 

Today the energy contr ibut ion of the radiation, assuming the photons and three 
rnassless neutr ino species to contribute,  can be calculated from the tempera ture  
of the lnicrowave background radiation T~0 = 2.75 K to be p0 = (~r2/30)g.T2o = 
8.09 × 10 -34 g cm -3 (compare (3.35) for g.).  Parameter izing the  non-relativistic 
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Table 1: Bounds on gt0 from the age constraint for to > 12 × 109 yrs and 
to > 15 × 109 yrs for different values of ~2.~. The - -  sign means that age constraint 
cannot be fullfilled. 

h [ to > 12 × 109 

I flv°c = 0 

.4 ~2o < 3.51 

.5 ~to < 1.48 

.6 flo < 0.58 

.7 ~o < 0.17 

.8 

.9 
1 

~'/o < 4.12 
flo _ 2.00 
~o < 1.02 
flo _< 0.53 
flo < 0.27 
~o < 0.13 
flo _< 0.05 

yrs 

i2o _< 4.30 
~lo _< 2.16 
i'lo _< 1.16 
~o <_ 0.65 
glo _< 0.37 
flo _< 0.21 
~2o _< 0.13 

to > 15 × 109 

~ lac  ~ 0 

flo < 1.48 
~o < 0.45 
~2o _< 0.068 

12,.c = .7 

F~o < 2.01 
~2o _ 0.87 
~o _< 0.38 
flo _< 0.16 
~o _< 0.05 
~o _< 0.007 

yrs 

~o < 2.16 
~/o < 1.00 
~/o < 0.49 
~2o _< 0.25 
~o _< 0.12 
flo <_ 0.06 
~o _< 0.027 

o ~_ 10-29 h 2 mat ter  contribution as flnrM 1.88 × ~0 g c m  -3, we get using (3.18) 
and (3.19) (P=~M/pT) = (R/Ro) × (2.32 x 104~/oh2). The time tEQ when the non- 
relativistic mat ter  contribution and the radiation contribution were equal follows 
from (3.25) to be 

tEO = ~ Hol lo  1/2 = 1.4 X 103(f~o h2) -2 yrs. (3.26) 

Comparing this t ime for all sensible ~o and h values with the age constraint to = 
12 × 109 yrs we see that  t h e  duration of the radiation dominated area can be 
neglected. 

3 . 4  T h e  e a r l y  r a d i a t i o n  d o m i n a t e d  e p o c h  

We want now to investigate very early epocl~s of the universe. From (3.18) and 
(3.19) we have already seen that  the radiation contribution dominates the energy 
density as one goes back in t ime towards the initial singularity R --* 0. Inserting the 
energy density of the radiation pn in (3.3) and neglecting k/R 2 against (87rG)/(3R 4) 
at early epochs we learn that  

R(t) c< v/'t. (3.27) 

Now we use the high relativistic expansion of the equilibrium expression for the en- 
ergy density (3.15). For a radiation gas with several species of bosons and fermions 
we get 

P n = . ~ g . T  4, where g . =  y~  gi + ~  ~ g, . (3.28) 
i=boson i= f ermion 
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Here the gi are the degrees of freedom of species i. The factor (_~)4 (cf. (3.35)) is 
appropriate for species which are dropped out of equilibrium. These may still have 
the equilibrium distributions but their ' temperature '  can differ from that of the 
termalized species, as it is explained in some detail below for the neutrino. Using 
(3.27) and (3.31) in (3.3) we get 

. . . . .  l / 2 m , t ( T )  -2 
t = u .oulg .  T 2 - 1 MeV sec. (3.29) 

The approximate sign is valid in the 100 MeV > T > 1 MeV range, where 
the photon, the three neutrino species and electrons-positrons can be considered 
as relativistic particles in equilibrium. Hence we have for g,(100 MeV > T > 
1 MeV) = 2 + ~[(3 × 2) + 4] = 10.75. Above temperatures of 300 GeV according 
to the standard model, we would have the following spectrum: the Gauge bosons 
7, Z0, W +, 8 Gluons, the Higgs douplett  (~+) and three Matter generations 

e L  ~ eR~ dt , Un, dn such that  g. = 106.75. 
According to (3.29) we have at the initial singularity t --~ 0, R ~ 0 but 

T ~ co. Note that in the nonrelativistic range the two-point interaction rate 
i.e. F = n~q(Vrdati,~Cr) , increases with the temperature as F = n~q(vr~t=~i~a) oc 
( m / T ) ~  exp ( -m/T) (v r~ ta , , ,~a ) ,  while the Hubble expansion (3.3) goes like 

H = 1.66g. ~/z T2 , (3.30) 
mpt 

such that the interaction rate will generally overcome the Hubble expansion rate. 
For relativistic particles we have n oc T z. By dimensional considerations we have 

n~q(vrd=ti,~a) c< TZTg2(T-2-zdi~g) .  E. g. for gravitational interactions or Fermi 
interactions (below the weak scale) the dimension of the coupling is dimg = - 2  
such that F cx T 5. Comparing the weak interaction rate n~q(v,~t~ti,~a) = G~F T5 with 
(3.30) one gets as the temperature when the neutrinos just went out of equilibrium 
T ~ 1 MeV. 

For dimension-less couplings we have F oc T, but for reasonable temperatures 
(T < rapt where these considerations make sense at all) F is greater than H because 
of the suppression by mpt in (3.30). Hence we assume that a generic particle species 
start with its equilibrium value of the energy density at early times. Comparing the 
interaction rates with the Hubble expansion rate one can calculate the development 
of g . ( T )  assuming the standard model spectrum and interactions. The result is 
depicted in figure 2. 

The sudden fall at 200 MeV is due to the quark-hadron transition. The exact 
shape in this range is not known. Since it can be sensible for the freeze out of the 
LSP, different possibilities have to be considered. Figure 3 shows the behaviour of 
g , (T )  with two hypotheses about the quark-hadron transition temperature. 
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Figure 2: The evolution of g.(T) as a function of temperature in the SU(3)c ® 
SU(2)L ® U(1)y standard model, from [2] 
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Figure 3: The evolution of g.(T) according to two assumptions about the quark- 
hadron transition temperature (150 MeV and 400 MeV, respectively). The dashed 
lines indicate the curve for free quarks using current algebra masses and the corre- 
sponding curve for free hadrons, from [8] 

100 

8O 

6O 
g(T) 

4O 

20 

' ' t ' ' ' 1 ' ' ' 1 ' '  I ' ' ' 1 ' '  ' 1  ' ' ' I '  ' ' 1  ' ' 

HADRONS 

QUARKS i ~ /  

o , , , l , , , l , j , , l , , , l , , , l , , , l  , , , I , , , I + ~ ,  
1.6 | .8 2 2.2 ~',4 2.6 2.0 0 3.2 3.4 

IORzo(T/MeV) 



]08 

If the interaction rates are great enough to maintain equilibrium, the Hubble ex- 
pansion can be considered as adiabatic. Let S = 8R 3 be the entropy in a comoving 
volume, then one has ' dS = 0. Furthermore one sees from (3.17), the relativistic and 
non-relativistic expressions for p(T), p(T) and n(T), that  the radiation contribition 
dominates the entropy density, which is therefore given by 

s = ~5g!")T 3, where g. = ,=bo,o= ~ g' + 8i=] iogi . (3.31) 

By the conservation of entropy we have 

gT3R 3 = const., (3.32) 

where we understand by g the wheigted degrees of freedom g = ~]i=bo,o,, gi + 
7~ ~]~=1~,~io~, gi for particles which are in equilibrium. This statement can easily be 
used in order to relate the present day number density of a particle, which went 
out of equilibrium at a temperature Tfr~z~ to the present day number density of 
photons, which is related to the measured temperature of the background radiation. 
Let us explain the mechanism with the neutrinos as an example. For T > 1 MeV 
the three species of neutrinos were kept in chemical and kinetical equilibrium with 
the photons, electrons and positrons by the weak interaction, especially we have 
T, = T~± = TT. BeIow the 'freeze out '  temperature of Tfr~z~ ~ 1 MeV the weak 
interaction rates compared with the Hubble expansion axe not fast enough to keep 
the neutrinos in equilibrium, so they decouple and the effective degrees of freedom 
for interacting radiation drop to from 10.75 (see above) to g(1 MeV > T > mr) = 
2 + 4 × (7/8) = 11/2. As long as g = const, the photon temperature cools down 
like the neutrino temperature since we have T~ c¢ R -1 by (3.32) and T~ o¢ R -1 by 
(3.11). Since the number density of radiation is n (x T 3, the latter fact simply states 
that the total amount of neutrinos in a comoving volume N = nR 3 is constant. 
This is trivially also true for any non interacting particle. 

When T drops below T = m, ,  the e + pairs become nonrelativistic and do no 
longer contribute to g such that  g(T ~ < <  me) = 2. The corresponding domination 
of pair-annihilation will heat the photons but not the decoupled neutrinos. The 
photon temperature before and after e ± annihilation is according to (3.32) related 
by 

(R~T.~) 3 _ g(T b > m~) 11 
- (3.33) 

while for the neutrinos we have from (3.11) (RbT~) 3 = (RbT~) 3 = (R~T~) 3. Since 
g = 2 has not passed any further threshold we have from (3.33) 

- -  (3.34) 
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still today. Note the spreading of g!8) and g. in figure 1 due the difference between 
photon temperature and neutrino temperature after pair-annihilation starts. The 
effective degree of freedom g. after the decoupling is given by 

7 (4~ 4/a 
g. = 2 + ~ x 2 × 3 × \ ~ - ]  ~_ 3.36. (3.35) 

In order to cMculate the number density of the LSP (the particle is denoted by X 
in the following) it is convenient to normalize the number density n x to the number 
density of the equilibrium radiation, i.e. to introduce f := (n×/T~) .  Having 
obtained the value for f at a temperature where X is out of chemical equilibrium, 
say f (T fr~z~) ,  by solving the rate equation (4.2) the present day density can readily 
related to the present day photon temperature. As " : ~ " x  ~:~,e~e = nxP~,° a we have 
from (3.32) 

r:,v , g(To) ,~3 
0 .It-~;~e~e) (T--~, ~-~0. (3.36) 

nx = gl, freeze) 

4 T h e  f r e e z e  o u t  o f  t h e  L S P  

4 . 1  R a t e  e q u a t i o n  f o r  t h e  d e c o u p l i n g  o f  t h e  L S P  

In this section we want to discuss the freeze out of the LSP. An up to date detailed 
technical treatment can be found in' [8]. The developement of the number density 
of the LSP is governed by the rate equation 4 

dn x 
at  = -3 nx - (4.1) 

Here v~d is the relative velocity of two particles, a is the cross section and ( )T indi- 
cates thermal weighting. The first term on the right-handside of (4.1) describes the 
dilution of the number density due to the Hubble expansion. The term -(Vrela)Tn2x 
comes fl'om the pair-annihilation of the X'S. Note that --(v~eta)Tnx.dt is the number 
dN of antiparticles which can be reached by X in a unit time intervall dt. Likewise 
the terlTl (Vrd(:r)Tn2q describes the pair-production rate of X'S by particles which 
are in equilibrium. In describing by (4.1) the decouple from chemical equilibrium 
one assumes that the particles are still in k/netica/equilibrium, hence the same 
(v~eta)T for both processes. It is suitable to introduce new variables x := Teq/m x 

and f ( x ) : =  n x / T  3 to get the rescaled equation 

- - -  f;q). (4.2) 

4Here one makes the natural assumption that no particle anti-particle asymmetry is present. 
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Here we have used (3.29). Furthermore (3.32) was used in order to replace - ~  

by T, which of course is only true as long as g(T) is constant. If the temperature 

depence of g(T) is taken into account, as it is done in [8], one has -NA = ~Y -~- ~ur--'l d.~_@ 
For most purposes, especially our qualitative discussion (4.2) is sufficient. 

For particles X which are high relativistic n (x T 3, so f = const, is a solution of 
(4.2). Here const. = g×/2 for bosons and const. = (7/4)gx/2 for fermions, as can 
be seen from the T > >  m× limit of (3.14). If these particles decouple before they 
become non-relativistic, their present number density can be related to the present 

o = const.(g(To)/g(Tfre~z~))T~ o" photon temperature by (3.36) i.e. n× 
If the particles remain in equilibrium when x drops below 1 their normalized 

number density will start to fall like 

f (x exp(-m×/T) (4.3) 

according to the non-relativitic limit of (3.14). The longer a heavy particle will 
stay in equilibrium the stronger will its number density be Boltzmann suppressed 
against the photon number density. 

The elementary particle physics input is encoded in (avr~l)T. Let Pl and p~ be 
the incoming momenta of the two X particles. Then the quantity (av~l}T is given 
by 

1 f 3 3 1 
(av~,)T := ~ . ]  d p~d p2f(E1)f(E2) E----~w(s), (4.4) 

where f(E) is given by (3.13), n~q is given by by (3.14) and one has defined 

w(s)-- IAa12(27ra)5 a pl q-p2- ~. pj ~I i (27r)32p 0. 
3 

Here A//is the reduced transition matrix element for the annihilation of the two X 
particles, summed over the final spins and averaged over the initial spins. Since for 
the couplings of the LSP one has typically x ,,~ ~ ,  at the decoupling temperature 
one can use the non-relativistic limit of (3.13) f (E) = tc(27r) -3 exp( -E /T)  (~ = 
4, 2 for Dirac, Majorana particles respectively) and expand (av~t)T in a power 
series in x. See [8] for the explicite expressions up to O(x4). The corresponding 
rate equation can be easily integrated numerically with the equilibrium value as 
initial conditions in order to get f(x1~¢~z~), where x f ~  is the rescaled temperature 
at which the X particles are out of chemical equilibrium. By (3.36) this is readily 
converted in the present energy density of the LSP. 

Heavy neutrinos were the first particles which were investigated along these 
lines [5]. Generally, for particles which couple to heavy vector mesons one gets the 
following picture. As mentioned in the last section the weak interaction went out of 
equilibrium at 1 MeV. If the mass of the neutrino is below this value the neutrinos 
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Figure 4: The relic density ~xh~ for weakly interacting particles of mass Mx 
shows three crossings with ~/h~ = 1. Also indicated are densities for particles 
which interact more strongly or weakly then the neutrino via the Z °. Extreme 
strong couplings reach the unitarity bound at Mx ,,~ 340 Tev, from [35]. 
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decouple as relativistic particles so the present day density rises with the mass in 
this region. At m~ ~-, 1 MeV this curve turns over and falls since the Boltzmann 
suppression (4.3) wilt become significant. However for mass values larger then the 
vector boson mass the cross section falls as ( l /E2) ,  so the decoupling temperature 
rises as the mass rises, which leads again to higher relic densities. These trends are 
depicted in figure 4. 

4.2 The  relic densi ty  for the  LSP 

As argued in the introduction the LSP has to be among the neutral states of the 
minimal supersymmetric standard model. Since the 8-neutr inos  are already ruled 
out by the combination of LEP results and cosmic neutrino experiments cf. section 
2, we concentrate on the neutralino as LSP candidate. The latter one is in general 
a mass eigenstate combination of the Higgsinos/~1.2, superpartners of the Higgses 
as well as of the wino 17V 3 and the bino/~ which are superpartners of the 3rd SU(2) 
gauge boson and the U(1) gauge boson, respectively. 

The masses depend on the soft supersymmetry breaking gaugino masses/1//1, M2 
as well as on the higgs mixing c which is introduced in order to avoid a phenomeno- 
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logical unaccepatible axion 

~ i  ~ j  L m ~  = ¢ g i j H I  H ~ - g 2 I f v i I ~ v  i - M I  [~JB. (4.6) 

If one assumes a grand unification scenario one has the following relation between 
the gaugino masses MI = (5/3)(a1/a2)M2. The ratio of the Higgs vacuum expec- 
tation values tan fl = (vl/v2) is a further free parameter. Recent LEP results imply 
that tan fl > 1.2. 

Combined with the usual Higgs gauge field couplings one get the following mass 
matrix for the charginos 

) (4.7) , 1 ,  

Likewise one has in the neutral sector the following mass matrix 

~ 3 ~ ~0 ~0 ( W  , B ,  H1,H~)  

M 2  0 

o 

--g~vl gl Vl 

g2 v: --gl v2 

- -g2Vl  g2v2 

glVl - - g l v 2  

0 e 

c 0 

H2 / 

( 4 . 8 )  

The parameter space (¢, Ms) is restricted from the new LEP results either because 
of the bound on the charginos which have to be heavier then 

mchar >_ 45 GeV (4.9) 

[47] or because the of the limit on the gluino mass [48] 

mgl,,i,o >_ 22 GeV. (4.10) 

Especially these bounds eliminate all the regions were the neutralinos contribuite 
considerable to the present mass density of the universe in the analysis of [6]. 

The situation for the abundances for the LSP after LEP .can be inferred from 
figures 5 and 6 which are taken from reference [49]. In figure 5 the contours in 
the (~, M2) plane are depicted were the neutralino is according to (4.8) a pure 
(99%) photino ~ := sin O~1]¢ -3 + cos Ow/~, a pure higssino [ /02) := (~o + / ~ o ) / v ~  ' 
H[12] := ( H ° - / 4 ° ) / v / 2  a 5 state for c --* 0 or a pure bino. The plot is for t a n / / =  2. 
The light shaded area is forbidden by (4.9) and the heavy shaded area is forbidden 
by (4.10). 

The present mass density can be calculated along the lines of section (4.1). Of 
course also the s-fermion masses, the higgs mass and the top quark mass must 
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Figure 5: Mass contours for the neutralino in the (c, M2) plane with the bounds 
from LEP on the charginos and the gluinos, from [50]. 
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be fixed to obtain (crr~l)T. In figure 6 the present day relic density in fractions 
of the critical density is plotted for tan fl = 2, m] = 74 GeV, m0 = 37 GeV 
and mtop = 74 GeV. Detailed investigations exhausting sensible values of m], mo 
and mtop can be found in [50]. The conclusions are that  by the LEP results the 
photino can be the LSP only in a very tiny parameter region: 23 GeV > M2 >_ 
50 GeV, [c I _< 300 GeV and tan fl < 3. Here it is also possible to adjust m] to 
obtain the preferred relic density about ~h 2 ~ 1/4. In the dominante part of 
the parameter space the LSP is either a bino or a higgsino. One can get values 
~h 2 ~ 1/4 by adjusting the s-fermion masses in a rather broad mass range for the 
bino 30 GeV < m~ < 350 GeV, which has therefore the best prospects as LSP 
dark mat ter  candidate. 

The bino or at least one s - l e p t o n  or ~ - quark must be lighter then ~ 350 GeV 
in order to obtain ~/h 2 < 1/4. The corresponding number for the higgsinos is 1 
TeV. This bound comes essentially from the the rising tail in figure 4. 

5 C o n c l u s i o n s  

Combined data from cosmic neutrino detectors and collider experiments have ruled 
out the s -neu t r i no  as dark mat ter  candidate. The new data from LEP shrink the 
parameter space (c, M2) for the photino in the (MSSM) so strongly that this previ- 
ously preferred dark mat ter  candidate seems to be rather unlikely. The remaining 
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Figure 6: The relic densities in fractions of 12hg for the bino /~ and the higgsino 
combination H[12], from [50]. 

°°°° Io00000 . . . .  

> / ,1,6 
~ 300 

cO 1/64 

100 16 4 _No DM 

30 

, I , , , , , , I  , I , , , , , , I  , I , , , , ,  
i010 30 ~00 300 ~000 3000 I0000 

M 2 (GeV) 

possibilities are the bino or the higgsino with masses above 20-30  GeV. The latter 
ones can be seen in dark matter detectors mainly by their spin dependent interac- 
tions which lead to counting rates which are three orders of magnitude below the 
current sensivity. For masses higher then the weak scale the relic density bounds 
on the LSP can set useful upper bounds on the masses which are complementary 
to the collider bounds. 
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1 I n t r o d u c t i o n  

Despite its impressive success it is generally believed that the Standard Model is still not 
the final theory of fundamental particle interactions. At present, one of the most attractive 
possibilities of extending the Standard Model is provided by supersymmetry (SUSY). A 
supersymmetric extension of the Standard Model allows us to incorporate in a natural 
way elementary scalar particles such as the Higgs boson into a quantum field theoretical 
framework. Moreover, it may enable us to relate the weak symmetry breaking scale to the 
grand unification scale [1, 2, 3]. 

If these ideas about 'low-energy' supersymmetry are true, one expects the supersym- 
metric particles to have masses below or about 1 TeV. The possibility that some of the 
SUSY particles may have masses even much lower than this value has tremendously 
stimulated the interest in experimental searches at the present accelerators (CERN-SppS- 
Collider, FNAL-Tevatron, TRISTAN, LEP100). The search for supersymmetry will also 
play an important r61e in the future, when experiments at higher energies can be per- 
formed. 

In this paper we shall describe how supersymmetric particles could be detected at the 
new colliders HERA, LEP200, LHC, SSC, and at a possible future linear e+e - collider. We 
shall present theoretical predictions for production cross sections and decay probabilities, 
as well as for the important signatures. Our calculations will be based on the Minimal 
Supersymmetric Standard Model (MSSM) which is the simplest supersymmetric extension 
of the Standard Model. 

Like the Standard Model, the MSSM is based on the SU(3) x SU(2) x U(1) gauge 
symmetry group, spontaneously broken down to SU(3) x U(1)~m. It has the minimal 
particle content, i.e. it contains the known particles, the gauge bosons, quarks and leptons, 
plus their superpartners, the gauginos (9, I/V~:, Z,'~), squarks ~ and sleptons g. As is well 
known, two Uiggs doublets are necessary, //1 = (H °, H~-) and/ /2  = (H +, H°), together 
with their superpartners, the higgsinos (~0 ~±~ ~, 1 ,2 ,  ]" 

The non-strongly interacting gauginos mix with the higgsinos to form corresponding 
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mass eigenstates. There are two pairs of charginos )~,  i = 1, 2, and four neutralinos 
~0  Xi, i = 1 , . . . , 4 ,  in order of their mass eigenvalues. The masses and couplings of the 
charginos and neutralinos are determined by the corresponding mass matrices [2, 4]. These 
depend on the parameters M, M', #, and tan fl = v2/vl. M and M' are the SU(2) and 
U(1) gaugino masses, sometimes also called M2 (or ml/2) and M1, respectively. # is the 
mass parameter introduced in the superpotential term #H1H2. Vl and v2 are the vacuum 
expectation values of the two Higgs doublets. In the following we shall use the relations 
M/m9 = (a2/az) ~ 0.3 and, assuming GUT, M ' / M  = (5/3)tan 2 9w ~ 0.5, where m9 is 
the gluino mass. Without loss of generality we take M >_ 0. 

To the two chirality states of the charged leptons and quarks correspond the right 
and left scalar particles in, [L and qn, qL. The masses of the scalar particles follow from 
renormalization group equations [5] 

rn2-fL,R rn21 + m~ + C(])M ~ :t: m~ cos 2fl(T~ - Qf sin~ 9w) (1.1) 

where T3 ] and Q / a r e  the third component of the weak isospin and charge of the corre- 
sponding left- or right-handed fermion, m0 is the common scalar mass at the unification 
point, and C([R) ~ 0.23, C([.L) = C(P~) ~ 0.79, C((1L) ,,~ 10.8, C(0R) ~ 10.1. Usually, 
fL and fR are to a good approximation also mass eigenstates. An exception may be the 
scalar top quark where there is tL -- tR mixing proportional to the large top quark mass. 

The MSSM contains five physical Higgs particles: h °, H °, A°(0 - )  and H*. In lowest 
order the masses of the Higgs particles are given in terms of two parameters (commonly 
used m A and tan/~), implying the bounds mho ~ mz <_ mHo,  mho ~_ m A  ~ mHo,  mH-'- 
mw [6]. Radiative corrections can change these tree level masses appreciably due to the 
large top quark mass [7, 8]. It is possible that mho > mz  and/or mho > mA. 

Moreover, an analysis of the renormalization group equations based on radiative elec- 
troweak symmetry breaking suggests tan fl to be in the range 1 < tan ~ < mt/mb. 

In the MSSM the multiplicative quantum number R-parity is conserved (R = +1 
for standard model particles including Higgs bosons, R = - 1  for the supersymmetric 
particles). This implies that there is a lightest supersymmetric particle (LSP) which is 
stable and into which all supersymmetric particles eventually decay. A further consequence 
is that supersymmetric particles can only be produced in' pairs. Usually, the lightest 
neutralino )~0 is assumed to be the LSP. 

To summarize, the following four basic parameters are necessary to specify the SUSY 
particle sector of the MSSM: m0, M, # and tan ~. For the description of the Higgs sector, 
at least one further parameter is needed (apart from the top quark mass mr), for which 
usually mA is taken. Production cross sections as well as decay rates depend in a charac- 
teristic way on these parameters. Here a systematic study of this dependence in the whole 
parameter space relevant for this energy will be performed. 

In Sect. 2 we shortly review the present experimental bounds and give the expectations 
for SUSY particle production at future colliders. In Sect. 3, 4, and 5 we treat SUSY 
particle production and decay in e+e - , pp, and ep collisions, respectively. Sect. 6 contains 
a summary. In the Appendix we give formulae for the e+e - production cross sections and 
for the three-body decays of charginos and neutralinos. 

2 Present  Exper imenta l  Bounds  and Expec ta t ions  

For the charged scalar partners of the fermions the LEP experiments have led to the bound 
m] >~ 45 GeV, and similarly for charginos m ~  ~ 46 GeV [9]. From the invisible width 
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of the Z ° one can derive rn~ > 42 GeV. An analysis [10] of the CDF data, taking into 
account cascade decays, has given the lower bound m~ > 135 GeV, whereas for squarks 
the limits ma > 170 GeV (for m~ < ma) and m~ > 130 GeV (for mq < m~ < 400 GeV) 
are obtained, assuming that all squark masses are equal. However, due to {L -- tR mixing 
the stop mass could be much smaller, even below 100 GeV [11]. With M ~-, 0.3m~ the 
bound on the gluino mass implies M > 40 GeV. From this and the negative neutralino 
searches at the Z ° one can derive m~0 > 19 GeV for the lightest neutralino. 

The present experimental bounds on the neutral Higgs particles in the MSSM, includ- 
ing one-loop radiative corrections are mh > 41 GeV and m A  > 20 GeV [9]. At present 
the experimental data do not restrict tan/L 

In the LEP energy range (Vq < 190 GeV) charged sleptons and charginos can be ob- 
served if their masses are below 90 GeV. The supersymmetry parameter region accessible 
is very roughly m0 < 90 GeV, and M < 90 GeV with Igl arbitrary, or Igl < 90 GeV with 
M arbitrary. At the LHC and SSC gluinos and squarks with masses up to around 1 TeV 
can be detected. This implies that the region m0 < 1 TeV and M < 300 GeV can be 
explored. 

An e+e - collider at vfg = 500 GeV allows chargino and selectron searches up to a 
mass of approximately 250 GeV. This yields an accessible parameter region of roughly 
m o <  250 GeV, and M < 250 GeV with I#l arbitrary, or I#1 < 250 GeV with M arbitrary. 

3 e + e  - C o l l i s i o n s  

In e+e - collisions the following SUSY particle processes are the most important ones 
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and would give direct evidence for supersymmetry: 

e+e - --+ 2 + + 2 y ,  i , j = l , 2  (3.1) 

e+e - ~ 2 ° + 2  °, i , j = l , . . . 4  (3.2) 
~+ 

e+e- ~ eL,R + eL, R (3.3) 

e+e- ~ /;+,R +/~L,R (3.4) 
e + e  - ~ ~ + ~  (3 .5)  

e +e- --+ qL,R + ~L,R" (3.6) 

In order to work out suitable signatures it is also necessary to study the decays of these 
particles. 

The three-body decays of charginos and neutralinos are: 

2~ --* l + +1- + 2~, q + @ + 2~, l+ + (;) +Xk,'° q + q-, + Xk-O (3.7) 

2 o --+ l + + 1 - + 2 ~ ,  q + q + 2 ~ ,  I~=+(~') "~= +Xk, q + • + 2~. (3.8) 

If kinematically allowed, the two-body decays will be the dominant ones: 

fC~ ~ Z°+2~ ,  h°( A°orH ° ) + 2 ~ ,  W ± + 2 ~ ,  H ± + 2  ° (3.9) 
2 ° -+ Z ° + 2  °, W*+2~k, h°(A°orH°)+2°k, H++2~.  (3.10) 

The produced sfermions ]L,R (slepton or squark) decay into a fermion f (lepton or quark) 
and a neutralino 2 o or chargino )~: 

NO ~L,n ~ e + xl, ~L --* v + ~7 (3.11) 
~0 

IlL --+ I~ -~- Xi, e- -{- X2 (3.12) 
- o  - , + -± {L,R --+ q + Xi, qL --+ q Xi, ttL -'+ d + 2 +, dL --+ u + X:(. (3.13) 

In this section we consider only squarks corresponding to light quark flavours. If the gluino 
is lighter than the squark, then the squark would first decay into a gluino: 

~L,Roq+~.  (3.14) 

As the lightest neutralino 2 ° is supposed to be the LSP, all SUSY particles will even- 
tually decay into 2 °. At high energies and masses in general cascade decays of SUSY 
particles occur leading to a rather complex decay pattern. This has a strong influence 
on the experimental signature of SUSY particles, in particular on the classical 'missing 
energy' signature. (In the following missing momentum will be denoted by ~6.) According 
to eqs. (3.9) and (3.10) some of the SUSY particles may also decay into Higgs particles. 
Therefore, the actual masses and couplings of the Higgs particles will influence some of 
the signatures. As is well known radiative corrections may appreciably change the Higgs 
masses compared with their tree level values [7, 8]. 

The formulae for the various cross sections and decays have been worked out by several 
authors, see [12], where a rather complete list of references is given. In the Appendix we 
present the formulae for the cross sections of the reactions (3.1 - 3.6), and for the three- 
body decays (3.7) and (3.8). The formulae for the two-body decays (3.9) and (3.10) can 
be found in [12, 13], and for the sfermion decays (3.11 - 3.13) in [12]. 
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3.1 L E P  200 

The predictions for cross sections will be given for vf~ = 190 GeV, assuming an integrated 
luminosity of 500 pb -1 per year. For earlier studies we refer to [14]. 

3.1.1 C h a r g i n o  production 

In Fig. 1 we show the region in the (M, #) plane (for tan fl = 4) which can be explored 
at LEP200 by searching for charginos and neutralinos. The region already excluded by 
unsuccessful search at the Z ° is also indicated. For other values of tan fl  similar plots are 
obtained. 

The  production mechanism for e+e - ~ ~+ + ~y, i , j  = 1,2, is 7, Z exchange in 
the s channel and P exchange in the t channel. The total production cross section for 
e+e - -+ ~+ + )~- is shown in Fig. 2 for r a v =  300 GeV and tanfl  = 4. It can reach 
6 lb. If both M > 90 GeV and I#l > 90 GeV, the light chgrgino becomes too heavy to 
be produced at this energy. If I#1 > M then 9~+ is more gau'gino-like, and if M > I#1 it 
is more higgsino-like. Therefore, sneutrino exchange can have a substantial influence for 
I#1 > M,  especially if rn~, ~_ raz .  The tanfl  dependence is in general weak. 

The decay of the chargino, ~+ --~ )~0 + l + u, ~0 + q + q, lead to ' two sided' events 
with acollinear, acoplanar hard leptons or jets and large missing energy: 1 + + l-  + i~ or 
1 ± d- jets d- ~ or jets d- jets d- ~. For ms = m~ --- rn4 = 300 GeV and tan/3 = 4 we obtain 
for these signatures a rate of 0.07 pb, 0.5 pb, 3.5 pb, respectively. 

A priori, it cannot be excluded that the sneutrino and/or the left slepton IL are lighter 
than the chargino. In this unlikely case the chargino would first decay into P or [L. This 
would drastically enhance the leptonic signal. 

A recent detailed study of chargino production at LEP200 is given in [15]. 

3.1.2 Neutralino production 
~0 ~0 As can be seen in Fig. 1 the SUSY parameter region for the reaction e+e - --~ XIX2 is 

larger than that for chargino production. Here the reaction mechanism is Z exchange 
in the s channel and ci,R exchange in the t and u channel. The Z ° couples only to 
the Higgsino components of the neutralinos, whereas the selectron couples only to the 
gaugino-component. For i < Igl the )~0 is gaugino-like, whereas for M > ]#1 it has large 
higgsino-components. Therefore, one expects sufficiently large cross sections for M > I#1. 
Only if ra~ ~- ra z  we get sizeable cross sections also in the region M < I#1- The total cross 
section can go up to 1.7 pb (for m~ = 300 GeV). 

The )~0 has the following decay modes: ~o ~ )~0ff, and X ~ l f f f  if kinematically allowed. 
~0 ~0 This leads to one-sided events. In Fig. 3 we show the cross section for e+e - ~ XIX2 

(e+e-)  q- l~ as a function of M and #, for m~ = m~ = m 4 = 300 GeV and tan/~ = 4. The 
cross section for e+e - ~ ~1°)~ ° ---* (jet jet +/~ is approximately a factor 20 higher and can 
reach 1.3 pb. 

If the sneutrino is lighter than the )~0, and the )~0 has a non-vanishing Z-ino component,  
then the decay )~o ___~ ~ + ~ would dominate, where the sneutrino is invisible. Then the )~0 
would be produced undetectably. 

In the case of a light slepton, m[ < m ~ ,  the )~0 would first decay into [+ + l ~:, yielding 
strongly enhanced leptonic rates. 
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Fig.  2: Cross section for 
e+e- ~ )C+:~i-, as a function of 
M and #, for v/s = 190 GeV, 
mr = 300 GeV, tanfl = 4. 
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3.1.3 Selectron production 

Here the reactions e+e - + ~+ + ~n, ~+ -4- ~L, ~L ~ + ~ can occur. The reaction mechanism 
for selectron pair production e+e - --+ ~L + + ~L, ~+ + ~n, is (~i Z) exchange in the s channel 
and :~0 exchange in the t channel. The process e+e - --* eL + eTn receives only t-channel 
contributions. 

The total  cross section o'(eLeL "t- eReR -b 2(CLeR)) varies between 0.75 and 1.75 pb for 
m~ = 80 GeV, depending mainly on the SUSY parameter M and only weakly on # and 
tanfl . 

~L and Sn decay differently: ~L -'-4 e)~ 0' e)~2 0, V)~l, ~R -4 e)~ 0, e)~ 0' where )~0 and )~i- 
further decay until )~0 is produced. The decay pat tern of en is simpler because the direct 1 
decay into the LSP dominates. For illustration we show in Fig. 4 the branching ratios for 
~L decays as a function of # for m~ L = 80 GeV, M = 80 GeV, tan fl = 4. As can be seen, 
cascade decays are possible if approximately M < me L or bu[ < m~ L. 

In Fig. 5 we show the cross section for the 'classical' signature e+e - --+ e + + e-  + ~, 
as a function of M and #, for m~ = 80 GeV, tanfl = 4. Notice that  the parameter  region 
covered by LEP at the Z ° is left out. The region [#1 >~ 120 GeV for M >~ 160 GeV is 
excluded because the selectron would be heavier than the LSP. The cross section for this 
signature can reach a value of 1.5 pb. It can also be seen that  the rate is much smaller 
where cascade decays are possible. 

In e+e - ~ ~L,R#L,R there is only (Z,7)  exchange. Hence the total cross section is 
smaller, a = 0.19 pb for m~ = 80 GeV. 

3.1.4 Sneutrino Product ion 

In the MSSM there  is only a left-sneutrino P - PL- The reaction e+e - + P+ + / ~  has 
contributions from Z ° exchange in the s channel and ) ~  exchange in the t channel. 

The total  cross section can go up to 3 pb for m~ = 80 GeV. The sneutrino can, however, 
only be seen if it decays in a cascade, P --~ e-)~ + ~ e - f i ° f f  ~, or f, ---r vfc ° --~ v ~ O f f ,  
because the direct decay into the LSP, P ~ u)~ °, is invisible. Such visible decays can 
occur only if M < m9, or [#[ < mv,. Possible signatures are the one-sided events: e+e - 
(or e - #  +) +/~, e- je ts  + ~, jets +/~, and the two-sided events: (e jets) + (e jets) +/~, etc. 
Fig. 6 shows the rate for e+e - --+ PP ~ (e+e - )  +/~ (one-sided), as a function of M and #, 
for m~ = 80 GeV und tan/~ = 4. The cross section for e+e - --* P~ --~ (e jet  +/~ is roughly 
a factor of 7 higher. 

3 . 2  e+e  - c o l l i s i o n s  a t  500 G e V  

It is conceivable that  SUSY particles only show up at energies of several 100 GeV. In this 
case an e+e - collider with an energy well above 200 GeV would be well suited to test the 
idea of supersymmetry.  Presently, several options for a linear e+e - collider in the energy 
range v G = 0.5 - 2 TeV are being discussed [16]. Most recently, detailed studies on the 
physics potential  of such a collider at v/~ = 500 GeV were performed [17]. This step in 
energy would considerably enlarge the explorable parameter range. Experiments at such 
a collider would allow a crucial test of the MSSM. In particular, if no Higgs particles 
were found, the MSSM would be ruled out [18]. It is therefore appropriate to study the 
SUSY particle production reactions (3.1 - 3.6) and the decays of these particles also at 
this energy. A detailed study is given in [19]. A new feature is that  also the higher mass 
states of the charginos and the neutralinos may be accessible, and cascade decays play a 
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Fig.  6: Cross section for 
e + e -  ~ ~ ~ ( e + e - )  + 
(one-sided), as a function of M 
and #, for V ~ = 190 GeV, 
m~ = 80 GeV and tanfl = 4. 
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more important r61e than at lower energies. For the following predictions of event rates 
we shall assume an integrated luminosity of 20 fb -1 per year. 

A study of SUSY particle production in e+e - collisions at v/s = 2 TeV is given in [12]. 

3.2.1 Chargino production 

Besides the pair production of the lightest chargino, e+e - -~ X1 Xl , also the reactions 
e+e - -* ) ~ ) ~  and e+e - -* ~ + ~  are possible. The parameter region in the ( i ,  #) plane 
(for tan/3 = 4) accessible by these reactions is shown in Fig. 7. Notice that  the contour 
lines ra2~ + m2~ = const are straight lines in the (M,/~) plane. If M > [#h then ~ 

is more higgsino-like and ~ more wino-like, and vice versa for M < I#l. The chargino 
masses are approximately M and ]#l. 

In Fig. 8 we show the total cross section as a function of M and # for V~ = 500 GeV, 
tan/3 = 4, mr = 600 GeV. The cross section can go up to 550 fb. If both M > 250 GeV 
and I#] >~ 250 GeV the light chargino becomes too heavy to be produced at this energy. 
It should be noted that for M < 250 GeV there is a dependence on the sneutrino mass. 
The cross section is smaller by 50 % for ra~ = 100 GeV than for mr = 600 GeV. This can 
be explained by a destructive interference between the Z and P exchange and because the 
P couples only to the gaugino component of the chargino which is dominant for M _< [#1. 
The tan/3 dependence is in general weak. 

In a restricted range of parameters the chargino ~ can also decay first into ~0 (see 
eq. (3.7)), although the direct decay into )~0 is still the dominant one. In a certain region 
of parameters the )~1 ~ can decay into real W +'s, ~ --~ ~1 ° + W +. 

The signatures are 'two-sided' events with acollinear, acoplanar, hard leptons or jets 
and large missing energy. The rate for e+e - -* )~1+~1 - -~ e + + e- +~b can go up to 7 fb (for 
mr = m~ = ra4 = 600 GeV, tan/3 = 4) leading to 140 events/year, assuming an integrated 
luminosity of 20 fb -1. The rates for the other signatures, e+e - --* )~+ +Xi- -+ e+jets+tb and 
e+e - --~ ~+ + )~- -~ jets + je t s  + ~  are larger than the rate for electrons by approximately 
a factor 14 and 50, respectively, if the masses of the exchanged scalar particles are much 
larger than raw. If they are around raw, then these ratios are different for M _ 250 GeV. 

In the case that  the sneutrino and/or the left-slepton are lighter than the chargino, 
the leptonic decay rates would again be strongly enhanced. 

A Monte Carlo study of e+e - -* X+Xi- taking into account beamstrahlung, background 
processes, and detector simulation, has been performed in [20]. The most severe Standard 
Model background is W ± pair production, which can be reduced by appropriate cuts. 

We now discuss the production of a heavy chargino, e+e - ~ ~1 ~ + )~ .  The production 
cross section is shown in Fig. 9 as a function of M and #, for tan/3 = 4, and raa = 600 GeV. 
It can go up to 50 lb. The heavy chargino may have quite a complex decay pattern 
because in general it decays in cascades until the LSP is produced. Two-body decays into 
real W±'s,  Z's, and Higgs particles, eq. (3.9), are possible in a large region of parameter 
space. The )~ and ~ then further decay. An interesting signature is therefore given by 
e+e - -+ ~ £ ~  --~ Z + X. The corresponding rate can reach a value of 20 fb yielding 400 
events per year. However, this rate depends more sensititvely on the SUSY parameters, 
especially on the masses of the Higgs particles. 

In a smaller region of the parameter space (see Fig. 7) pair production of the heavy 
chargino is possible, e+e - --~ £+ + £~-. Characteristic signatures would be given by the 
decays of ~ into real W's and Z's, e+e - -+ )~+~ --~ Z +  Z +  X, Z + W  ± + X ,  
W + + W - + X .  
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Fig. 8: Total cross section for 
e+e- ~ )~+ + 21 as a function 
of M and #, for mr = 600 GeV. 
The parameter region explored 
by LEP200 is cut out. 
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3.2.2 Neutralino production 

At v q = 500 also higher neutralino states can be produced, e+e - --* 2 ° + 2 °. The 
~0 ~0 parameter region in the (M, g) plane accessible by the reaction e+e - ~ XIX~ is again 

larger than that  by e+e - ~ 2 + 2 1  . [f m z  < m < [#[, then 21 o is approximately B- 
ino-like, 2 o is W3-ino-like, whereas 2 o and 2 o are higgsino-like. On the other hand, if 
M > I#[ > m z ,  2 o and 2 o have large higgsino components, whereas ~o and 2 o are B-ino 
and W3-ino-like, respectively. The neutralino masses are approximately M / 2 ,  M ,  [#1, and 

[13, 21]. 
In the paramter domain also accessible for pair production of light charginos, the cross 

~0 ~0  section for e+e - ---+ XaX2 can go up to 200 fb (for m~ = 600 GeV). Outside this domain 
this cross section is, unfortunately at most a few fb, unless the mass of the exchanged 
selectron is very small (~  100 GeV). 

Again, the most interesting signatures for ~0 ~0 XaX2 production are one-sided events. The 
~0 ~0  cross section for e+e - --+ XIX2 ~ ( jet jet + ~ can reach 130 fb (for m~ = m~ mr = 

600 GeV). The rate for e+e - ~ 20 + 20 ~ (e+e -)  + ~ would be smaller by a factor of 
approximately 20. 

It turns out that  some of the production cross sections for the higher neutralino states 
~0 ~0 are comparable to that  of e+e - --* X1X2. For the higher neutralino states more decay 

channels are open, and, therefore, cascade decays are more likely. This will lead to a more 
complex decay pattern and in general reduce the ~ signal. On the other hand, more decays 
into Z's and W+'s are possible leading to multileptons and/or multijets in the final state. 
In addition, the rates will depend more sensitively on the properties of the Higgs sector. 
For a more detailed discussion we refer to [19]. 



130 

45 

40 
35 
30 
25 
20 
15 
10 
5 
0 

(GeV) 500 

Fig. 9: Total cross section for 
e + e  - --+ )~1 + + ) ~  + c .c .  a s  a 

function of M and ~ for 
tan fi = 4, my = 600 GeV, 
v G = 500 GeV. The  paramete r  
region explored by LEP200 is 
cut out. 

(GeV) 

e~ 

900 

800 

700 

500 

500 

4OO 

300 

200 

100 

0 

Fig.  10: Total cross section for 
selectron pair product ion at 
x/~ = 500 GeV, tan fl = 4, 
# = 200 GeV e+e - --+ ~+ + ~ ,  
as a function of M and m~ R. 
The parameter  region explored 
by LEP200 is cut out. 

(GeV) 

~0 
5OO 



131 

3.2.3 S e l e c t r o n  production 

In the energy range considered the mass difference between @R and @L according to eq. (1.1) 
can be quite sizeable. Therefore, in our calculations of selectron production cross sections 
we shall always use eq. (1.1) to relate m~a and me L to the SUSY parameters m0, M, 
tan ~. Quite generally eR is lighter than @L. 

Since the production cross sections depend only weakly on tan fl and # (apart from 
the region I#1 < 100 GeV), we present in Fig. 10 the cross section for e+e - ~ ~+ + ~ 
as a function of M and me R for # = -200 GeV and tan fl = 4. For m~ R = 200 GeV the 
cross section varies between 50 and 150 fb depending on M. Notice that  according to the 
mass relations, eq. (1.1), there exists a maximal value of M for a given value of m~ L and 
m ~ .  It is M = 410 GeV for m ~  = 200 GeV, and M = 240 GeV for m~ L = 200 GeV, for 
tanf l  = 4. 

The cross section for e+e - ~ e+eL is similar in magnitude to that  for eR@R production. 
~± ~=F It should be noted that  also the cross section for e+e - ~ e L .+ el:l, which has only t channel 

contributions, has a comparable cross section, depending on the SUSY parameters. 
In the mass region considered, the difference in the decay pattern of eR and eL is more 

pronounced, and cascade decays are expected to play a more important r61e. We show 
in Figs. l l a  and b the branching ratios for the ~R and eL decays into neutralinos and 
charginos, eq. (3.11), as function of # for M = 150 GeV, tan/3 = 4, for m~ R = 200 GeV 
and m~ L = 200 GeV. 

It is noticeable that  in a large region of #, more precisely ]#t > M, the eR decays 
to 100 % into :~0. This can be understood because the eR couples only to the B-ino 
component of the neutralinos, and ~o is essentially a B-ino in this parameter region. For 
[#1 < M, the decays into ~0 and )~0 are significant because here these particles have large 
B-ino components. 

Concerning the ~L decays, the direct decay into )~0 is not the most important one. For 
]#[ >~ M the decay into the light chargino dominates, the branching ratio being between 
40 % and 50 % .  For ]#1 ~< M the decays into ;~0 and ;~° 3 can have large branching ratios 
because in this region the heavy neutralinos have large gaugino components. 

Despite the possibility of cascade decays the most interesting signature for pair pro- 
duction of eR or eL is again provided by the two-sided events with acollinear, acoplanar, 
hard electrons plus missing energy. The rate for e+e - --* ~+e~ ~ e + + e- + ~ can go 
up to 180 fb for m~ R = 200 GeV and tan fl = 4, whereas the corresponding one for 
e+e - ~ ~+e L --* e + + e- + i~ reaches 60 lb. 

A Monte Carlo study of selectron production is given in [22]. 

3.2.4 Sneutrino production 

The cross section for e+e - --, P~ + ~e is in general higher than that for selectron production 
because the Z ° and the charginos couple more strongly. For mv~ = 200 GeV the cross 
section can reach 700 fb. 

The sneutrino can only be observed if it decays first into a chargino or a higher mass 
neutralino (see eq. (3.12), which then decays into leptons or quarks. Only if M < m~  
or ]#] < mg~, the sneutrino is visible. It turns out that in this region the decay into the 
light ehargino has the largest branching ratio. Therefore, the important signatures are 
again one-sided and two-sided events with hard leptons and jets, as already discussed for 
LEP200 (see Sect. 3.1.4). More details on pair production of sneutrinos as well as of the 
other sfermions ([~L,n, P~,, ~tL,n, dL,n etc.) can be found in [19]. A Monte Carlo study of 
smuon production is given in [23]. 
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4 pp C o l l i s i o n s  

In pp collisions one expects the strongly interacting SUSY particles, gluinos and squarks, 
to be produced with the largest cross section of all supersymmetric particles [24, 25]. 

The basic processes for gluino and squark production in hadronic collisions are [26] 

g + g  ~ [7+~ (4.1) 

q T q  --~ ~ + ~  (4.2) 
g + g  -~ ~ + ~  (4.3) 

(-) (-) 
q+ q ---, ~+ ~ (4.4) 

(-) (-) 
g+ q --, ~+ ~ .  (4.5) 

For example, for a gluino,mass m9 = 500 GeV one obtains at V~ = 16 TeV, the design 
c.m. energy of the LHC, a production cross section of --~ 50 pb for pp ~ ~ + X .  Similarly, 
for a squark mass M4 = 500 GeV one gets a cross section of --~ 15 pb for pp ---+ ~-~ + X .  
Assuming an integrated luminosity of 105 pb- 1 this would mean a rate of 5 x 106 gluino 
pairs and 1.5 × 106 squark pairs per year. For the SSC one obtains a cross section ¢r ~ 10 pb 
for pp ~ ~ + X at v/s = 40 TeV and m~ = 1000 GeV. Taking an integrated luminosity 
of 104 pb -1 yields 105 such events per year. 

If squarks are heavier than gluinos then the gluinos produced decay into 

__, q + ~ + ~0 (4.6) 

-~ t + ~ + ~  ° (4.7) 
-~ q + ~'+ ~,~, (4.s) 

t - ~ b +  ~7 , t +  b+:~ + (4.9) 
-o (4.10) g + x l .  

Here we distinguish between decays into light quarks q and those which involve the top 
quark because they show a different decay pattern. This is due to the fact that in the 
decays (4.7) and (4.9) the top Yukawa coupling and additional quark mass terms are 
important. The decays (4.6 - 4.9) proceed via virtual squark exchange. The decay into a 
gluon, eq. (4.10), is possible via quark-squark loops, the t - t" contribution being the most 
important one. It is not negligible in certain regions of the SUSY parameter space. 

In the mass range for gluinos and squarks we shall consider, also the charginos and 
neutralinos will be heavy. Therefore, in most cases they will decay into W ±, Z ° or Higgs 
particles and lower mass states of charginos or neutralinos according to eqs. (3.9) and 
(3.10). If these two-body decays are kinematically not allowed, the three-body decays, 
eqs. (3.7) and (3.8), may also become important. Thus in general one has cascade decays 
of gluinos. They end when the lightest supersymmetric particle ~1 ° is reached. The final 
states can therefore contain Z°-bosons, W±-bosons, neutral and charged Higgs-bosons, 
leptons and jets and missing momentum from the lightest neutralino and the neutrinos. 

If the gluinos are heavier than the squarks, then squark production will be more im- 
portant. In the case of light quark flavours the squarks then decay according to eq. (3.13). 
For the following decays of the top squark and the bottom squark 

tL,R ~ t + ~ °  (4.11) 

tn ~ b+:~ + (4.12) 

~L -~ t + ~ -  (4.13) 
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it is again necessary to take into account the top Yukawa coupling. (Notice that  the 
Yukawa coupling terms in t'L ~ b + )?+ and/~n --* t + )?7 are proportional to the bo t tom 
quark mass which we shall neglect here.) 

The neutralinos and charginos again decay as described above. Also here a variety of 
cascade decays is possible until the lightest neutralino is produced. 

For illustration we show in Fig. 12 the domains in the (M, #) plane (for tan fl = 4) 
where for a squark with a mass of 500 GeV cascade decays are kinematically possible 
(domain I), or where only transitions into the lightest neutralino are allowed (domain 
II). For a gluino with a mass of 500 GeV the same picture as in Fig. 12 is valid taking 
M "~ 0.3 too. 

In pp collisions sleptons, charginos and neutralinos could also be produced by the 
Drell-Yan mechanism, but their cross sections are smaller [27] and are not considered 
here. 

4.1 Gluino decays and signatures 
In order to understand the complex decay pattern of gluinos and squarks it is necessary 
to consider the individual steps in the cascade. For the decays we have used the formulae 
as given in [28] where a complete list of these is presented. 

- , ~ 0 , - I -  Considering first only the gluino decays into light quarks, ~ ~ q+q-t-X~ , and leaving 
out the decay ~ --* g + -0 Xl, the overall picture of gluino decays would be rather simple 
[29] because then only the gaugino components of the neutralinos couple: For <~ mJ3 
mainly the heavy chargino and the heaviest neutralino are produced, the light chargino 
and the two lightest neutralinos being mainly higgsinos. For [#1 L m~/3 the decays into the 
light chargino and the second lightest neutralino would dominate, because here the heavy 
particles are higgsino like. This is illustrated in Fig. 13 for ra~ = 750 GeV and tan/3 = 4. 
(Furthermore, we have taken M~L = MqR = 2m~, as = 0.1, and sin 2 Ow = 0.23.) _ 

This simple picture is changed if in the decays ~ ~ t + t + )?0, ~ __+ t + b + )?7, 
--, b + t + )?+ the top mass is taken into account [28, 30]. (We take rat = 150 GeV.) 

In the parameter domain 1#1 £ mJ3 the dominant transition of these decays is now that 
into the light chargino, contrary to the simple picture described above. For It[ > m J3  the 
influence of the Yukawa coupling terms is smaller because the higgsino-like particles are 
now heavy and, therefore, reduce the phase space, a feature which is even more pronounced 
for smaller gluino masses. 

The decays ~ --* g + )?0 play a minor r61e. In the cases considered the sum of the 
branching ratios for .q --* g + )?0 is a few percent. It can, however, be larger for smaller 
gluino masses and smaller tan/3 [28, 30]. 

The branching ratios for ~ --~ )?0 + q + q (or g) and .~ --~ )?~ + q + ~', summed over 
all quark flavours including the top quark, are shown in Fig. 14 as a function of # for 
ra~ = 750 GeV, tan/3 = 4. For I#l < rug~3 there are substantial transition rates into 
the light chargino and the light neutralinos. For 1#1 > rag~3 the transitions into the light 
chargino and the second lightest neutralino are the most important ones. Notice that  the 
branching ratio for the decay into the lightest neutralino is only about 15 percent. It is 
smaller than that of the decay into )?0 because for larger I#l the )?0 is mainly a B-ino 
and the )?o a W3-ino. Notice that the decay into )?3 o appears due to 9 ~ g + )?3 o and 
O ~ t + f + ) ?  °. 

Next we discuss some interesting signatures for gluino production p + p ~ 9 + 9 + X 
(assuming that the squarks are heavier than gluinos). The 'classical' signature would be 
that both gluinos go directly into the lightest supersyInmetric particle )?0, leading to events 
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Fig.  15: The branching ratios for 
the two produced gluinos to go 
directly into )~o and 2 )~l°; i.e. 
~ + ~ . + ~ ° + x  ( ),and 
~ + ~  --+ ~0 + ~0 + x ( - -  -), 

(where'X does not contain another 
~o) for m9 = 1000 GeV as a 
function of #, for tan fl = 4. We 
have taken mt = 150 GeV, 
MOL = M4R = 2 m~, as = 0.1, and 
sin 20w = 0.23. Also shown the 
region covere(l by LEP200. 
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with large missing energy. This is shown in Fig. 15 for m~ = 1000 GeV. The branching 
ratio for both gluinos going directly into the LSP is at most a few percent. Thus with 
an integrated luminosity of 105 pb -1 one could expect --~ 103 such events at the LHC. 
Similarly at the SSC one would have 2 × 103 such events. The probability that only one 
gluino decays directly into ~0 is higher and can go up to 30 percent, as also shown in 
Fig. 15, The region in g which will be explored by LEP 200 is also indicated. 

A further interesting signature would be two Z°'s in the final state which originate 
from the cascade decays. Fig. 16 shows the branching ratio for ~ -4- ~ --+ 2 Z ° + X for a 
gluino mass of 1000 GeV. (We have taken the mass of the Higgs particle h °, mh0 = 80 GeV, 
and the masses of all other Higgs particles much heavier.) The branching ratio can go up 
to 10 % ,  but there is a strong dependence on the SUSY parameter #. 

Fig. 16 also shows the branching ratios for 9 + 9 --* 4 #'s, 5 #'s, and 6 #'s. Here it is 
summed over all events with muons coming from Z °, W +, t-quark deCays into b W ,  and 
three-body decays of charginos and neutralinos. Over a large range of # the four muon 
rate is about 10 -4 . 

We want to emphasize that some details of the 2 Z ° and multimuon rates depend on 
the mass spectrum in the Higgs sector. If the decay of a chargino or a neutralino into a 
Higgs particle is possible the other decay rates are reduced. 

A more detailed discussion of gluino signatures is given in [31]. Monte Carlo studies 
taking into account the standard model background (tt, Z ° Z  ° production, etc.) were 
performed and have shown that at the LHC gluinos in the mass range 300 GeV < m~ < 
1000 GeV can be detected [25, 27]. 

4.2 Squark decays and signatures 
As to the squark decays, one has again to distinguish between those into light quarks and 
heavy quarks, and of course between left and right squarks. All cases were discussed in 
detail in [28] where also the corresponding formulae are given. 

If the quark masses can be neglected the pattern of squark decays according to 
eq. (3.13) is again rather simple. The branching ratios for right squarks are then the 
same (independent of flavour) as for right selectrons of the same mass. These are already 
shown in Fig. 11a. For [g[ > M right squarks decay practically 100 % into ~0, and for 
1#[ < M to more than 90 % into ~o. 

Left squarks decay dominantly into charginos as can be seen in Fig. 17 where we plot 
the branching ratios of fiL --* d +  ~+, u + ~0, for Mq = 1000 GeV. For [g[ > M ([#[ < M) 
the transition into the lighter (heavier) chargino has the largest branching ratio due to 
its gaugino nature in this region of #. Among the decays irito neutralinos, for [#[ > M 
([#[ < M) the transitions into )~0 (~0) have also big rates as the )~0 (~0) is mainly a 
W3-ino in this region of #. A qualitatively similar pattern holds for dL decays. 

The influence of the top quark mass terms in the decays of t'R is seen in Fig. 18 
where we plot the branching ratios into charginos and neutralinos as a function of # for 
Mq = 1000 GeV, M = 500 GeV, tan/3 = 4. Now the decays into charginos become very 
important, for [#1 < M the decay into )~+ being the dominant one. In the {L decays the 
top Yukawa coupling only changes the width of tL ~ t + )~o. 

As to the bL decays, the main differences between these and the decays of dL appear 
again in the region [#1 < M. Due to the top Yukawa coupling the width for bL ""+ t "q- Xl 
becomes the largest one. 

Concerning the signatures for squark production p + p ~ ~ -4-~ + X, one expects 
the direct transition of a squark into the lightest supersymmetric particle )~0 to be more 
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Fig.  16: The branching ratios for 
g + g ~ 2 Z ° + X (  . . . . .  ), 
~ + # ~ 4 g + x  ( - - ) ,  
# + ~ - - ,  5 ~ + x  (- - - ) ,  
~ + ~ 6 ~ + x  ( . . . .  )for 
m# = 1000 GeV, as a function of 
the parameter #, for tan ~ / =  4. We 
have summed over all events with 
muons coming from Z °, W ±, and 
three body decays of charginos and 
neutralinos, and from t --* W b .  We 
have taken mt = 150 GeV, 
MqL = M~n = 2m#, as = 0.1, 
sin 2 8 w  = 0.23, mho = 80 GeV and 
all other Higgs particles heavy. 
Also shown the region covered by 
LEP200. 

Fig.  17: Branching ratios for •L 
decays into charginos and 
neutralinos for UL --+ d + ~t +,  
U"~-  ~ 0  Xi, as a function of #, for 
M4 = 1000 GeV, M = 500 GeV, 
tan fl = 4. We have taken 
m t  = 150 GeV, as = 0.1,  

sin 2 9 w  = 0.23. The curves 
correspond to the following 
transitions: 

• into the light chargino ) ~  
• into the heavy chargino : ~  
o into :~l ° 
o into )~o 
A into ;~o 
<> into ;~o. 
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important than for gluinos because right squarks of light flavours decay into 2 ° to more 
than 90 percent (for I#1 > M). Fig. 19 exhibits the branching ratios for ~ + ~ ~ 2 ° + X 
and 0 + ~ ~ 2 ° + 2 ° + X, i.e. only one of the squarks or both directly decay into 2 °, for 
M4 = 1000 GeV, tan fi = 4, and M = 500 GeV. We have averaged over left and right 
squarks and all flavours. It is interesting to note that in a large range of # the branching 
ratio into two 2 ° is an order of magnitude larger than that into one 2 °. As a consequence, 
about 40 % of the events where a ~ pair is produced will have the 'classical' signature of 
large missing energy. This feature is quite independent of tan fi and holds in a large range 
of squark masses, provided I#1 > M. 

Other signatures would be ~ + ~ --* ZZ + X, 4# + X, 5# + X, etc. They are discussed in 
[31]. Monte Carlo studies [25, 27] have shown that also for squarks a mass reach of about 
1 TeV is possible at LHC. 

5 ep  Co l l i s ions  

The processes most favourable for finding supersymmetric particles in ep collisions are 
the reactions [32, 33, 34] 

e + p  ~ ~L,n+~L,n+X (5.1) 
e + p  ~ PL+~L+X,  (5.2) 

The basic reaction mechanism is eq ~ eL,R ClL,n or cq --+ PqL scattering via t channel 
neutralino or chargino exchange. The sea quarks and the antiquarks in the proton also 
contribute, though their contribution is smaller. 

The produced slepton or squark decays into the corresponding fermion and a neutralino 
)?0 or chargino 2~, eqs. (3.11 - 3.13). (Here we assume that the gluino is heavier than the 
squarks.) The higher mass neutralinos and charginos then further decay until the LSP is 
reached, see eqs. (3.7 - 3.10). Therefore, also here cascade decays are possible. 

The production cross sections for both reactions (5.1 - 5.2) depend most strongly on 
the sum of the masses of the slepton and squark produced, and of course on the centre of 
mass energy. 

5.1 H E R A  

At HERA ep collisions at v~  = 314 GeV will be studied. The design luminosity is 1.5 x 
1031 cm-2s -1. The reactions (5.1 - 5.2) have been studied for this energy in [33, 34]. Cross 
sections larger than 0.1 pb have been found for m~,r,+m4 ~ 180 GeV. If cross sections down 
to 5× 10 -2 pb can be measured, the observable mass range extends to m~,r,+rn¢ ~ 200 GeV. 
With the exisiting experimental bounds on the squark and selectron masses from CDF 
and LEP (see Sect. 2) and within the MSSM, the possibilities of detecting SUSY particles 
at HERA are therefore limited. At a higher e.m. energy, e.g. x/~ = 450 GeV, the mass 
range me,~ + m4 __ 300 GeV could be explored. 

Relaxing the MSSM by including R-parity violating terms would allow single SUSY 
particle production and thus extend the explorable mass region for SUSY particles. For 
further studies we refer to [35]. 

5.2 L E P / L H C  

The LHC will offer the unique possibility of being operated also in the ep collider mode 
at Vrs = 1.4 TeV with a luminosity of about 1032 cm-2s -1. Also here the search for SUSY 
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particles will be an interesting subject. Such an ep collider will substantially extend the 
explorable mass region, especially for selectrons and sneutrinos [36, 37]. 

In Fig. 20 we show the cross section for e- p ---+ ~L,n + (IL.n + X as a function of the 
sfermion mass, summed over all possible pairs of selectrons and squarks, taking m~ = m4, 
for # = -200 GeV and various values of M. These cross sections are larger than 0.1 pb 
for m] < 300 GeV. More generally, the cross section is larger than 0.1 pb for m~ + m4 < 
600 GeV. Therefore, sfermions in this mass range would give between 50 and 1000 events 
per year (assuming an integrated luminosity of 500 pb -1). The production cross section 
for sneutrinos is in general larger than that for selectrons because the chargino couplings 
are stronger than the neutralino couplings. 

In Fig. 20 also the dependence on the SUSY paramter M can be seen. The cross section 
varies approximately within a factor of 2 for m~ = m4 = 250 GeV and in the parameter 
range 200 GeV < M < 800 GeV. The dependence on # and tan/3 is rather weak. 

The individual production cross sections for different sle'pton and squark species are 
very different from each other, a(e-p ~ PL + dL + X )  is in general the largest cross section 
due to the larger couplings of charginos to sleptons and squarks. In selectron production 
ep ~ ~L 2V ~L "~ X has the largest cross section. 

To find suitable signatures of SUSY particle production in ep collisions a proper treat- 
ment of all the decays is necessary. Selectron, sneutrino and squark decays have already 
been discussed in detail in Sect. 3.2 and 4.2. 

The signatures substantially depend on the supersymmetry parameters M and #, or 
more precisely, whether cascade decays are possible or not. A good signature for selectron 
production is one isolated electron + missing energy on the lepton side. For m] = 250 GeV 
we get a rate of ,- 0.1 pb. A signature for sneutrino production is a lepton pair e+e - (or 
#+e-)  + missing energy on the lepton side. If cascade decays of the sneutrino are possible 
the cross section for such events is ,~ 0.01 pb. More details can be found in [38]. 

Monte Carlo studies taking into account the background have shown that detection of 
selectron and squark production in the mass range m~ + m4 < 600 GeV should be possible 
[39]. 

6 Summary 

Here we have presented a systematic and rather complete study of supersymmetric parti- 
cle production and decay within the Minimal Supersymmetric Standard Model in e+e -,  
pp, and ep collisions at high energies. The prospects of searching for supersymmetry in ex- 
periments to be performed at HERA, LEP200, LHC, SSC, LEP/LHC and at a 500 GeV 
e+e - collider are investigated in the corresponding supersymmetry parameter domain. 
Production and in particular the decays of supersymmetric particles depend in a charac- 
teristic way on the supersymmetry parameters. A general feature is that cascade decays 
become more important with increasing particle mass, leading to a complex decay pattern. 
Furthermore, this strongly influences the signatures for supersymmtry. Quite generally, 
the "classical" signature, large missing momentum, will be weakened. Instead of it, new 
signatures as W ~, Z °, Higgs particles in the final state will appear. 

Within the next years, experiments at FNAL will extend the mass range for gluinos and 
squarks beyond 200 GeV. At HERA sleptons and squarks are detectable if approximately 
m~,~ + m4 < 180 GeV. Non-strongly interacting supersymmetric particles, in particular 
sleptons and charginos, will be observed at LEP200 if their mass is below 90 GeV. 

A big step forward in the search for supersymmetry is possible by the pp colliders LHC 
and SSC. A mass range for gluinos and squarks up to the TeV region will be explored. 
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Fig.  20: Cross section for 
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Missing momentum as well as Z°'s and multileptons in the final state serve as good signa- 
tures. If LEP/LHC will also be operated in the ep collider mode, then it will be possible 
to cover a mass range for selectrons and sneutrinos according to rn~,v + mq _< 600 GeV. A 
linear e+e - collider with c.m. energy of several hundred GeV up to 2 TeV would offer the 
unique possibility of exploring the properties of the non-strongly supersymmetric parti- 
cles. We have studied in detail supersymmetric particle production at a 500 GeV e+e - 
collider. Such a collider would allow us to rule out the Minimal Supersymmetric Standard 
Model if no Higgs particle will be found. Moreover, it would extend the mass range of 
charged supersymmetric particles up to almost 250 GeV. 

Concerning the explorable SUSY parameter range, a 500 GeV e+e - collider is roughly 
comparable to the LHC. Whereas at the LHC the strongly interacting SUSY particles up 
to a high mass can be detected, an e+e - collider is best suited for a detailed study of 
the non-strongly interacting SUSY particles. This would be necessary for fixing the SUSY 
model and its parameters. 

A A p p e n d i x  

A . 1  C h a r g i n o  a n d  n e u t r a l i n o  m i x i n g  

The chargino mass matrix as defined in [2, 4] is diagonalized by two unitary 2 × 2 matrices 
U and V, 

X + = Vijg '+, X'( = U i j ¢~ ,  i = 1, 2 (A.1)  
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where 
¢+ = (-i~+,¢I,~), ¢7 = ( - i~ - ,  ¢~,1) (A.2) 

with h i ,  and ¢}~, ¢~/1 the two-component spinors of the wi-ino,  and the charged hig- 
gsinos H+,//~-, respectively. The two-component spinors X + and Xi- are combined to the 
four-component Dirac spinors of the charginos: 

)~i+ = ( X+ )2}- i = 1,2. (A.3) 

Explicit formulae for the elements of U and V can be found in [15]. 
The 4 x 4 neutralino mass matrix as defined in [2, 4] is diagonMized by the 4 x 4 

unitary matrix N, 
X°= Nij¢ ° j = 1,4 (A.4) 

in the basis 

¢o = (-iA,,  -iAz, ~blH, cos/3 -- ¢~/~ sin/3, ~b~l sin 13 + ¢~/~ cos/3) (A.5) 

with A,, Az, ¢11 and ¢~t~ denoting the two-component spinor-fields of the photino, Z- 
ino, and the neutral higgsinos, respectively, The four-component Majorana spinors of the 
neutralinos 20 are then constructed from the two-component spinors X °. 

A.2 Chargino production 
The cross section for e+e - --* ~+~f is given by [40]: 

&r da.y da z dcr ~ da~z da~ 
d t  - ~ t  +--g+-J/-+--3/-+-JV + -  

daz~ 
dt (A.6) 

dt 
d ~ T z  

dt 

da.dt = 8a.s 4e4 51j ((M~ . . . .  u)(M] u)+(M~ t)(M~ t)+2M~Mjs) (A.7) 

d~z _ g4lDz(s)]2 ( ~ , z 
dt 32rs 2 cos 40w \(L~ + R~)((O,j ) + (O~ja) 2) 

[(M/2 - u)(M] - u) + (M? - t)(M] - t)] + 
2 t L t R t R 2 4 (L2~ + R~)Oij Oij 71ir]jM, Mjs (L2~ 2 , L2 

- - - (o~)  ) R~)((% ) 

[(M? - u)(M? - u ) -  (M? - t ) (M]  - t ) ] )  (A.8) 
i 

2 2 2 t)(M] t) (A.9) 
- -  6 4 ~ . s 2  ( V / l ) ( V j a ) ( M  i - - 

. . . . . .  e2g 2 Re(Dz(s)) 6 ( -t. R ~tO ~..L + Oi j, R) 
167rs acos 20w ,~.(L~. w~ ,~ 

[ ( M g - u ) ( M ] - u ) + ( M ? - t ) ( M ] - t ) + 2 M i M j s ] -  (A.10) 

, .  ( L ~ - R  ~,, ij Oij ) [ ( M ? - u ) ( M ] - u ) - ( M : - t ) ( M ] - t )  
J J  
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channel qH~K 

S 7, Z 

c o e ~ .  

a ~  

A ~ ' ~  

LL LR RR 

3 ~ ~ _ 3 ~ ~ 
8~r 8r  

394L2(L~+R~)q _ 3g4R~(L~+R~) 
16~r cos 4 0 W 16 ~r cos 4 0 W 

A RzK 3e~eqg2Lq(L~+R~) 
8 ~r c o s  2 0 W 

3 e2e~ g2 Rq( Le+ Re) 
8 ~r cos 2 0 w  

Tab.  1: The coefficients as appearing in eqs. (A.18 - A.23) for the cross section 
e+e- ~ qH~K" Here e = gs in0w,  e > 0, and eq is the charge of the quark in units of e. 
The couplings are given in Appendix A.6. Notice that A HK = B HK = A ~  g -- Az  I~g = O. 

da~v 
dt 

daz~ 
dt 

e2g2Dr'(t)-------(Vil)2.5 .. ( ( M  2 - t ) ( M }  - t ) +  M i M j s )  
16~rs 3 ,3 

g4 Re(D~(t)D,z(S) ) T , 1  t z  

16rs 2 cos 20W ~,~ vii vjl 
t L  2 t R  [0,./ (M i - t)(M] t) + O i j  yi~jM, Mjs] 

(A.11) 

(A.12) 

where Dz = (s - m2z + imzFz) -1, Dv - 2  - m~)-l" Mi is the (positive valued) mass 
of the chargino : ~ ,  and Yl = ±1 is the ~s l l  of the corresponding mass eigenvalue. The 
couplings L¢, Re, 0~ LR are given in Appendix A.6. 

A.3 Neutralino production 
~0 ~0 The cross section for e+e - --+ XIXj is given by [40]: 

da d~z da~ 
dt - d~ + - ~  + -  

daz~ 
dt (A.13) 

daz 
dt 

da~ 
dt 

g 4 
2 //L 2 2 

161rs 2 cos 40w IDz(s)l (Oij ) (L~ + n~) 

[(~ - . ) ( r n ~  - , , )  + (r .~  - t ) (  C - ~) - 2 , , , j m , m j ~ ]  

L L 2 
641rs2 (f2if2j) ID~L(t)12(m~-t)(m~-t)+ 

- . ) (r .~ - ~) - 2 R e ( D ~ ( t ) D ~ ( . ) ) , , , j ~ i m j ~ ]  + ID~(u)l:(m~ 

R R  2 

(A.14) 
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* 8 

daz~ _ 9 4 
dt 16~rs 2 cos 20w Re'Dz's"o'jL(t~" 

• L ¢ L f  L D~L(t ) - t ) -  rlirljmlmjs ) + 

R~S:~S:~ [ D ~ . ( t ) ( ( m ~ -  t)(m~ - t ) -  rliTlimimis) + 

D ~ . ( u ) ( ( m ~ - u ) ( m ~ - u ) - r l l r l i m l m i s ) ] } ,  (A.16) 

where Dz = (s - m2z + imzPz) - '  D~L,~(x ) = (x -- m = ~-1 mi is the (positive valued) e.L,R] • 

mass of the neutralino ~0 Xi, and 7/i = -t-1 is the sign of the corresponding mass eigenvalue. 
O t t  L , R  L R The couplings --ii , f~i' are given in Appendix A.6. 

A.4 Sfermionproduction 

The cross section for e+e - --~ fH fg ,  where f is a slepton or a squark (H, K = L or R), 
is given by [40]: 

da da~ daz da~ da~z da.y~ daz~ (A. 17) 
dt - dt + - ~ / - + - ~ - + - - ~ + - ~ - +  d--V' 

dt 

daz 
dt 

da~ 
dt 

da~z 
dt 

da.y~ 
dt 

daz~ 
dt 

= A H K ( U t - M ~ M ~ K )  
8 4 

: AH K (ut - M}.M}K ) IDz(s)l 2 
8 2 

_ ( u t - % % )  AfKO,(O + 
8 2 

y, yjmlmj B Hn Di( t )Dj( t ) 

Z~3 

- A~? (u t -M~ 'M~K)  Re(Dz(s)) 
8 3 

( u t -  M~ M}K ) E A,~ Di(t) _ _  H K  

8 3 
i 

2 2 

(u t -  M~ M~,) Re(Dz(,))~ HK - A z ~  D i ( t ) ,  
8 2 

i 

.(A.~8) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

where Dz = (s - m~z + imzFz) - ' ,  Di(t) = (t - m~) -1, m i is the (positive valued) mass of 
the exchanged neutralino )~0 or chargino )~ ,  and yl = +1 is the sign of the corresponding 
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channel e+e~7 v~'~ 

s 7, Z Z 

coeff. L L L R R R  L L 

A H  K ~4 _ ~ _ 
8~" 81r 

Y e~ e e l  __ Y e~ e e ]  A H K  - 'L2 'L~+R 2' -~,R2,L2+R2, .q4(L2-{-R2¢) 
16  Ir cos  4 0 W  16  Ir cos  4 8 W  6 4  ~r cos  4 8 w  

AHK ~, _ 
Sv~ 8v~ 8v"~ 

B H K  _ ...~ f~. f~. f~. fL. _ _ 
6 4  ~. ,J e~ a e z a  e3 a e3 

ATHzK e2g2L¢(L¢÷R¢) _ e~g~Re(LeTRe) - -  
8 ¢r cos  2 0 W 8 'a cos  2 0 W 

16~r 

4 L 2  - L I  2 
g e Yei 

1 6  ~r cos2 0 w  

channel i~Z~, [ =  # , r  

s 7, Z 

t 

1 6 r  

4 R 2  - R I  2 
g e Jei 
16 ~r cos ~ 8W 

g 4 L e ( l ~ l )  2 

3 2  ~ cos  2 0 w  

/-"l//l  

Z 

coeff. L L L R R R L L 

A H  K ~4._~_ _ e4 _ 

8¢: 8¢c 

y ~ ¢'r e, _ Y ~t e eJ 94(L~+R 2) AHK -¢L2'L2-R2~ -4R21L2+R2~ 
16 ~rcos4 0W 16~'cOS4 0W 64 ~r c°s4 0W 

AHK . . . .  

BHK . . . .  

A.yHzK e292L'(L'+R~) - e292Rt(Le+R¢) _ 
8~r cos  2 0 W 87r cos  2 0 W 

A.yH~ K . . . .  

A zBK . . . .  

Tab.  2: The coefficients as appearing in eqs. (A.18 - A.23) for the cross sectiol 

e + e -  --+ ] H ] K ,  ] = e, /~, f ,  u,, v,, Yr. The couplings are given in Appendix A.6. 
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~c+-~ 

As 6 (OLi) ~ 

B~ 6 (O~) 2 

C s  L R -6  0~0~  

A L 3 L ( f ~ k V / 1 )  

A~ ~(f&U~l) ~ 

AL 3 L L 

-3v~ f~ V. O~, A L L L 

L R B L 3v/2f~}ViiOki 

3v~ f£U~iO~ A L L 

L L BL~ --3v~fJkUnOkl 

~°u3 :'+ - ~+ dd Xk uu 

~L f~L ~2~¢ R O~R~2 
1 2  ~ ~ - ~  " ~ 

cos  4 0 W 

~L 0 'R ~2~-¢R 0 'L ~2 
1 2 '  " ~ ' ~  ~ ~" 

cos  4 8 W 

{ L 2 .j_ i:~2 ~o,L O,R 

cos  4 O W 

3 ( U k l g i l )  2 

I L oIL  " , 2 - - , ' n  , ~ I R , 2  
12t d W*t~"v~O 

cos  4 0 w  

l L O I R ~ 2 - - ~ R  O ~  ~2 

c o s  4 0 w 

{L 2 ~ 2  ~o,L OtR 
- 1 2 '  ~" ~ ~' ~ 

cos  4 0 w 

3 (v~i ~1) ~ 

0 

0 

0 

- 6  Vk~V~lO~L. 
cos  2 0 W 

IL 6 uk, u,,o # i L u  
cos  2 0 W 

0 

6 VklVilO~iL'~ 
cos  2 0 W 

IR  - 6  Yk~ Y"O k~La 
cos  2 0 W 

0 

Tab.  3: Coefficients in eqs. (A.25 - A.30) for hadronic chargino decays. The couplings are 
given in the Appendix A.6. Notice that A~ = A~ = A~ = A~ = A~  = B~ = B ~  = 0. 

mass eigenvalue. M]n is the mass of the produced sfermion fH. Here m] = 0 has been 
H , K  AH,K taken for the corresponding fermion f .  The coefficients Az , etc. are given in Tab. 1 

and 2. 

A . 5  T h r e e - b o d y  d e c a y  

The width for the decay of a chargino or neutralino into a lighter chargino or neutralino 
and a fermion pair is given by [34]: 

r(2~ --, 2k + If')  = 3 2 ~ s i n ~ O ~  d~df(W. + W, + W~ + W~ + W,  + W~) (1.24) 

1 (A~(m~ - ~ ( { -  m~) + w~ - ( ~ -  i ] ) 2  

w, = A~ ( ~ - ~ / ?  + A~" i ~ : _ - ~  ~ 

(m~ - ~)(~ - m~) ~ ( . ~  - ~)(~ - m~) 
W~ = A~ ( - ~ - ~ E  2 + Ao ( ~ _ ~  

(A.25) 

(A.26) 

(A.27) 
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)?+ --, 

As 2 (OLi) ~ 

Bs 2(O~) ~ 

Cs - 2  ~ ~ O~iO,u 

A L L 2 (f~vi~) 

A L L 2 (fi~u.) 
AL L L 

L L As L - v/2 f ~ Vii Oki 

L R B i V~ffukVilOki 

L R As i v/2ft~UaOk~ 

-v'~fi~ViiO~i BLu L 'L 

~ + ,  ~+~+~- ~+~o 

~L O ~/" ~ 2 - ~ R  O ~R~2 4t , , i]*t  , ,i, 
COS 4 0 W 

IR 2 ~L 2 4 (L~O~) +(~,0~) 
cos  4 0 W 

{ L2 .A .  I~2~( 'pL  t"l~R - 4  ' , "'~l ] ~  k i ~  k i  
c o s  4 0 W 

(o~)~ 
c o s  4 0 W 

O,n ~2 
, k i ;  

cos  4 0 W 

oIL 0 ~  
_ k i  k i  

cos  ~ 0 W 

( V k l V / 1 )  2 

0 

0 

V. ¢ 9 Vkl i10~iL~ 
COS2 0 W 

- 2  VklVi lO~L'  
cos  2 0 W  

0 

0 

( Ukl  Ui l  ) 2 

0 

0 

0 

• IR  _ U~I U n  0 ~i 

cos  2 0 W 

ukw ,  o ~  
cos  2 0 W 

Tab.  4: Coefficients in eqs. (A.25 - A.30) for leptonic chargino decays. The couplings are 
given in the Appendix A.6. Notice that A~ = A~ = A=~ = Asat = A,~ = B~ = B ~  = 0. 

W~ = 

w ~  = 

2711zlkmlmks R 2~li~kmlmkg 
AL~ ( [ _ ~ _ - - ~ / ~ )  + At~ ( ~ . _ 7 ~ _ - - ~ / ~ )  (A.28) 

2 (A,L(m~ -- t~( t - -  m~) + BL~li~lkmimkg) + 
(~- M~)(~ - My) 
(L ~ R) (A.29) 

L 2 _ BLrlirlkmimk~ 2 (A~(m, ~)(~- m~,)+ ) + 
(~ - i ~ ) ( ~  - U ~ )  
(L ~ R). (A.30) 

ml is the (positive valued) mass of the chargino or neutralino Xi, and yi = +1 is 
the sign of the corresponding mass eigenvalue. Ms is the mass of the W :l:, Z, exchanged 
in the $ channel. ML, MR denote the masses of the left and right sfermion exchanged 
in the {- and fi channel. The range of integration for ~ and [ is given by the bounds, 

~, .  = 0, ~ m =  = (m,  - ink) ~, {m,.,~o~ = 1 /2 (m~ + . ~  - ~ T ~ /~(m~,  m~,  ~)) ,  ~ (a ,  b, c) = 
a 2 + b 2 + c 2 - 2ab - 2bc - 2ca. The coefficients A~, B~, etc. are given in Tab. 3 - 6. 
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A, = B ,  = C ~  

A L = A L = AL~, 

Z ~  = Z ~  = Z ~  

Z~ L = B L = A, L = BL~, 

Z,~t = B~n~ = Z~n~ = B 

[ollL "t2 [L2..LR2 ~ 

c o s  4 6' W 

L L 2  
(fikfii) 

R R 2  (ftkfh ) 
tL  tLoIJL r 

2 J ~ u  ~ 
c o s  2 0 W 

t R t R O I I R D  
2 ~ "  ~'~ 

c o s  2 0 W 

¢") t,'L "t2 
Mj 

c o s  4 0 W 

L L 2 

fIL e L  GIlL 

c o s  2 0 W 

HL 2 2 2 
12 (o ~) (Lq+Rq) 

c o s  4 0 W 

3 L L 2  

3 n R 2  (fqkfg,) 
eL ~¢LottL 1" 6 "qkJqi ki--q 

c o s  2 0 W 

¢.R cROHR I~, 6 JqkJqi ' ki'*q 
c o s  2 0 W 

T a b .  5: Coefficients in eqs. (A.25 - A.30) for :~0 __, y;~ff. The  couplings are given in the  
Append ix  A.6. 

~ o ~  

A~ 2 (OL) ~ 

B~ 2 ( 0 ~ )  2 

Cs L R - 2  0ik Oik 

A~ [.eL E "t2 Wvi kl) 
A~ [.~L U X2 

~,Jli k l  } 

ALt~ tL ~cLvI ,r JviJl i  k l U k l  

L L A, L, 

L R B L v ~ f ~ i V k l O i k  

A,~ x/2 ftLUk~O~ 

L L UL~ -v/2fh UklOik 

£+k t-  r, "+- Xk ud 

6(o ) 
6(o ) 

L R - 6 0 i k O i k  

3(f~V~) ~ 

3 (fLUkl)  2 

3 f f VklU l 
L L --3V/ '2  f l i  V k l O  ik 

L R 3 v ~  f~yk lOik  

L L -- 3 v f f  f ~i Uk ~ O ~k 

T a b .  6: Coefficients in eqs. (A.25 - A.30) for )~0 ~ x + f f f .  The  couplings are given in the  
Append ix  A.6. Notice tha t  A~ = A~ = A~Rt = A,Rt = A,~ --= B~Rt = B ~  = 0. 
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A . 6  C o u p l i n g s  

f~L = --V~[ 1 Ow) Nk2+ ] (T31 - ef sin s ef sin 9wNkl 

f}~ = --V~ef sin 0w (tan OwNk2 - Nkl) 

L] = T31 - ef sin: 0w 
Ry 

L 

, 

O,/.L z) 

Or! R 
iY 

(A.31) 

(A.32) 

(A.33) 
(A.34) 

(A.35) 

= -e f s in  29W 

= -- (Ni4 cos fl - N,3 sin/~) , ~  + (Nil sin Ow + N,2 C O S  Ow) v j l  

Uj2 + (Nil sin Ow + Ni2 cos Ow) Ujl (A.36) = (N,4 sin fl + N,3 cos fl) v~  

1 E = -V~IVyl - 5Vi2 j2 4- ~ij sin 2 0w (A.37) 

~-- -UI1Uj l  - ~Vi2Vj2 4- ~ij sin 2 9w (A.38) 

= _ 1  (Ni3 cos fl 4- Ni4 sin fl) (Nj3 cos/~ 4- Nj4 sin fl) 
2 
1 

4-5 (-N~3 sin/3 4- Ni4 cos ~) (-Nj3 sin ~ 4- Nj4 cos fl) (A.39) 

- - O  '/.n (A.40) 
- -  - - $ 3  " 

Here T31 and ef are the third component of weak isospin and the charge (in units of e) of 
the fermion f. We have used a convention where the matrices U, V, and N are real. 
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1 I n t r o d u c t i o n  

Bartl, Majerotto and MSl31acher [1] have presented a comprehensive s tudy of supersym- 
metry searches in pp, e+e - and ep collisions in the range of LEP and Tevatron energies 
to LHC and SSC energies. For completeness, we briefly discuss the prospects of super- 
symmetry  searches with 200-1000 GeV photon beams. Such beams are expected to be 
obtainable at linear e±e - colliders through back-scattering of high intensity laser rays 
on high energy electron beams [2]. The energy spectrum of the resulting beam of real 
photons is very hard, and the conversion efficiency can reach almost 100%. Thus, in 
addition to e + e- collisions, linear colliders may provide e7 and ~/7 collisions with ener- 
gies and luminosities similar to those obtained with e+e - collisions. In the following, 
we concentrate on a few particularly promising reactions involving the production of se- 
lectrons and their decay into a single electron accompanied only by invisible particles. 
More specifically, we compare the event rates which can be expected in e+e , e e , e 7 
and 77 collisions at linear colliders with e±e - centre of mass energies sV~'~ee = 500-2000  
GeV and luminosities of the order o f / :  = 1033 cm-2s -1. Furthermore, we consider the 
same range of supersymmetry parameters as in Ref. 1. 

2 P h o t o n  E n e r g y  S p e c t r u m  

The production of energetic photon beams by back-scattering laser rays on high energy 
electron beams from linear colliders was proposed and is described in Ref. 2. The 
distribution P(y) of the energy fraction y of an electron transferred to a photon,  y = 
E.y/E~, is given by 

where 

1( 
P(y) = -~ l - y + - -  

1 4y 4y 2 ) 
1 - y x(1 - y----~ ÷ x2(]---- y) 2 ' (1) 

X 
0 < y < - -  (2) 

- - x + l  
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Figure 1: Distribution of photon energies for laser Compton back-scattering (z = 2+2Vr2) 
and Bremsstrahlung in the Weizs/£cker-Williams approximation for a 250 GeV electron 
beam. 

and 
4EeElaser 

: - (3)  

The factor N normalizes f d y P ( y )  to 1. The electron and laser beams are taken to be 
aligned and their respective energies are Ee and Elaser. In what follows, we assume a 100% 
conversion efficiency and neglect the angular dispersion of the back-scattered photons. 
When z reaches the value 2(1 + V~) ~ 4.83, the back-scattered and laser photons have 
enough relative energy to produce e+e - pairs. Since the conversion efficiency drops 
considerably for larger values of x, we assume the laser energy to be tuned in such a 
way as to obtain z = 2(1 + v~). The corresponding energy spectrum (1) is displayed in 
Fig. 1. It sharply contrasts with the energy spectrum of Bremsstrahlung photons, which 
is much softer and, hence, less useful for heavy particle searches. 

The cross sections of e 7 and 3'T reactions involving such a back-scattered photon 
beam have to be folded with the energy distribution (1). The laboratory frame is thus 
not the centre of mass frame and the e 7 and 3'7 centre of mass energies, ~ and 
respectively, are given by 

~e3 '  = y S e e  (4) 

s~3, = yly2se~ , (5) 

where ~ = 2E~ is the collider energy and the different y's are the photon energy 
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fractions. The convoluted cross sections are obtained from 

g(Se~) = dy P(y)a(Se.r) (6) 
"] ymlt* 

fY""d  f~"~ d O'(See) : JYl i .  Yl L Y2 P(Yz)P(Yu)~r(s-r~) , (7) 
Ymi./Yz 

where the upper integration limits y,~,~ are given by Eq. 2 whereas the lower limits are 
set by the kinematical threshold of the considered process, ymi, = (m~ + mf~)2/S~e or 

Ymin --  4m~/s~e. 

3 S u p e r s y m m e t r i c  P r o c e s s e s  

We concentrate here on the simplest possible signals: one or two high p j_ electrons and 
otherwise only invisible particles giving rise to missing pj.. This kind of signal is obtained 
in minimal supersymmetric extensions of the standard model [3] where the lightest su- 
persymmetric particle (LSP) is the lightest neutralino ~0. A selectron pair ~+~- or 
selectron-neutralino pair ~-;~0 is produced with the selectron subsequently decaying into 
an electron-neutralino pair e + ~ .  This scenario assumes R-parity to be conserved, so 
that the LSP is stable and remains unobserved. 

We examine the following processes in the narrow width approximation: 

e+e- - - ,  (8) 

° (9) 
e-3' ---, ~-~o ~ e - ~ l  o ,~o (10) 

The corresponding lowest order Feynman diagrams are shown in Figs 2 and the 
resulting first three differential cross sections 1 can be found in l~efs 4,5,6. They depend 
on four supersymmetry parameters [3]: 

• the soft supersymmetry breaking mass parameters Ms and tt associated with the 
SU(2)L gauginos and higgsinos, respectively (for the U(1)y gaugino mass parame- 
ter M1 we assume/I//1 - M:5/3 tan: 0w, where t?w is the weak mixing angle, in ac- 
cordance with the renormalisation group evolution from a common value M1 = M2 
at the GUT scale); 

• the mass of the selectron m~ (for simplicity we assume the supersymmetric partners 
of the left- and right-handed electrons to have equal masses: m~L --- m~n); 

• the ratio tan Ov = v:/vl of the Higgs vacuum expectation values (as long as [/~J ~> 
M2/2, this is not an essential parameter). 

IWe have computed  the cross sections to the processes (8) and  (9) in the approx imat ion  where 
m-o  << m-o (i=2--4). xz xi 
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+crossed 
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Figure 2: Feynman diagrams contributing to the supersymmetry signal in e + e-  collisions 
(top left), e - e -  (top right), e - 7  (bottom left) and 73' (bottom right). 

For arbitrary values of M2 and # the gauginos and higgsinos mix to form neutralino 
and chargino mass eigenstates [3]. Roughly, for [#[ ~> M2/2 the higgsino admixture 
to the lightest neutralino is small [7]. For some of the processes studied here this is 
an essential condition to obtain measurable cross sections since the higgsino-electron 
Yukawa coupling is suppressed by the mass of the electron. In this region of parameter 
space the dependence of the gaugino masses and couplings on 0, remains very small. 
If, in addition, M2 ~ rag, one finds roughly mf~ ,~ M2/2 and m2~ ~ m)~ ~ M2. 

For consistency with the assumption that ;~ "is the LSP we must in this case require 
M2 ~< 2m~ . ff the selectron is lighter than the second lightest chargino or neutralino, 
the ~- --* e -~°  branching ratio [8] is 100%. If there are charginos or other neutralinos 
which are lighter than the sdectron, the eL -+ eL:~ branching ratio can be considerably 
less than 100%. The ~ --+ e ~  ° branching ratio, however, remains close to 100% over 
most of the (~u, M2) parameter space. 

In what follows we have considered a typical scenario: 

# = 375GeV 

M2 = 250GeV 

m~ = 250 GeV (when it is not allowed to vary) 

tan0, = 4 . 

As a result of this choice we have m~? = 120 GeV and the ~L ~ - -0 eLX1 branching ratio 
is 53%. 

4 C r o s s  S e c t i o n s  

The total cross sections for the processes (8-11) are plotted in Figs 3a s  functions of the 
selectron mass for two collider energies, svf~ee = 500 and 1000 GeV. It appears that a 
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Figure 3: Total cross sections times branching ratios to electron for the four production 
mechanisms e+e - --+ ~+~-, e e __+ ~-~- ,  e-  7 __+ ~-~o and 77 --+ e+e-  for collider 
energies ~ = 500 GeV (left) and 1000 GeV (right). 

light selectron can be most efficiently produced in the 77 mode, all intermediate mass 
one in e~e - ,  whereas the e-  7 channel allows one to probe heavier seleetrons, beyond 
the kinematical limit of pair production. The 77 mode turns out to be a particularly 
interesting option at higher energy accelerators, because away from threshold its cross 
section depends very little on s.y.~. This is due to the absence of a propagator in the 
diagram involving the four boson vertex. Note that  the curves all start  at 120 GeV, which 
is the mass of the LSP (here the lightest neutralino) for the chosen set of parameters. 
The kink in the curves at m~ ~ 220 GeV (which is particularly visible for ~ = 1000 
GeV and for the reactions involving two selectrons) is due to the fact that  for this choice 
of parameters the lightest chargino has a mass of 220 GeV. Heavier seleetrons thus have 
more decay channels open than the one leading to the single or two electron signal. 

The question remains whether this signal is large enough to be separated from the 
s tandard model background. Specializing on the e- 'y process, Fig. 4 compares the be- 
haviour of the total e - 7  ~ ~-;~0 ~ e-~0:~0 cross section to those of the s tandard model 
background processes e-  7 --* e - Z  ° --+ e-~,v and e-  7 --~ W - u  --* e -Dr ,  as functions of 
the collider energy. In spite of a reasonable number of signal events (400 for 10 fb -1 
at ~ = 500 GeV in the scenario considered in Fig. 4), it appears that  the supersym- 
metric signal is completely swamped. However, since most of the standard model cross 
sections is due to the u-channel exchange in e- 7 ~ e - Z  ° and the t-channel exchange in 
e - 7  ~ W - v  (since me, m w  << sv/s-~e ), these cross sections can be drastically reduced by 
angular or rapidity cuts [9]. Moreover, the standard model background can be computed 
with great precision. The accuracy of these calculations can even be checked in the case 
of the W -  channel, by comparing with the e - 7  --* # - P u  signal. In principle, thus, any 
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Figure 4: Total cross sections times branching ratios for obtaining a single high pj. 
electron accompanied by invisible particles fi'om ~-~0 production (assuming the scenario 
described in the text with m~= = 250 GeV) as compared to the standard model W - u  
and e- Z ° production. 

deviation from the predicted rates for the standard model processes can be a signal for 
supersymmetry. For m~- = 250 GeV, M2 _< 300 GeV and I#[ > M2/2, it turns out that  
one needs about 20 fb -1 at a ~ = 500 GeV collider in order to establish a 3a effect. 
This is well matched to the range projected for these colliders. 

5 C o n c l u s i o n s  

In summary, the e- 7 and 77 modes at e + e- colliders turn out to be competitive cptions 
to discover or study selectrons. The e - 7  mode is particularly interesting for relatively 
heavy selectrons with masses above the pair production limit m~ = s~r~'~/2. In contrast, 
the 77 mode is favourable for relatively light selectrons with masses m~ < sv/~ee/3. In 
the mass range sVr~ee/3 < m~ < ~ / 2 ,  the usual e±e - modes are the most promising. 
In addition, the process e -7  --~ e-)~? can serve as probe of the lightest neutralino, an 
elusive particle which is difficult to detect. Finally, the standard model backgrounds are 
generally large, but can be handled in a sizable region of the supersymmetry parameter 
space. 
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1. INTRODUCTION 

Flavour changing neutral current (FCNC) transitions can proceed in the standard 
electroweak model (SM) only through loops induced by the exchange of the W ± bosons 
and quarks. The loop suppression and the heaviness of the W* and Z ° gauge bosons 
provide in first approximation a sensible explanation for the rarity of these processes. 
Even so, the SM would not have had such a spectacular success in confronting experiments 
without the presence of a further "process dependent" suppression mechanism related 
to the field theoretical structure of the quark mixings: the unitarity of the  Cabibbo- 
Kobayashi-Maskawa (CKM) matrix [1]. This property of the quark mixing matrix, residue 
of the diagonalization of the up and down quark fields in the charged current, makes FCNC 
transitions vanish identically if all quarks of the same isospin are degenerate in mass. This 
effect, known as the Glashow-Iliopoulos-Maiani (GIM) [2] mechanism, is at the root of 
the potential relevance of a heavy top quark for this class of processes. 

When extensions of the standard model are considered, other new sources of FCNC 
effects may arise. If neutrinos are massive, lepton flavour violating transitions appear as 
well, in analogy with the quark sector. If the Higgs sector is extended, physical charged 
scalars may replace the W boson in the loop and lead to additional or genuinely new 
effects. Neutral Higgs induced flavour changing transitions may also arise at the tree level 
and require these particles to be much heavier than the Fermi scale, in order to replace 
the missing loop and GIM suppressions. 

It is therefore important to carefully carry on and perfect the study of this sector of 
the electroweak phenomenology because of its implications on the detailed structure of 
the standard electroweak model and on the quest for the missing pieces (top quark and 
Higgs sector). Also non-standard physics, which may still hyde from us in direct searches, 
has a chance of being indirectly probed in this world of "low energy" phenomena. 
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A plethora of FCNC processes is available to us for theoretical and experimental 
studies. How to efficiently spend our efforts in trying to disentangle a specific effect? How 
to look for processes that  are most sensitive to the physical scenario that  we want to test? 
In this lecture we shall see that,  just with the help of simple and general considerations, we 
can recognize a systematic structure in FCNC transitions which provides us with simple 
but effective criteria for dedicated searches. We will first try to analyze the relevance 
of a heavy top quark for electroweak FCNC transitions and then study its impact on 
some extension of the SM. In particular our present discussion will focus on the minimal 
supersymmetric scenario. 

2. RARE FLAVOUR VIOLATING TRANSITIONS 

The world of loop-induced flavour changing transitions is populated by the so called 
"penguin" and "box" diagrams. Some examples are given in fig. 1, where the quark 
diagrams contributing to K + ~ ~r+uP are shown. Since, quite independently on how we 
name the various fermion lines, the structure of the Feynman diagrams is basically the 
same, it is sensible to expect that there exist properties of these transition amplitudes 
that are common to wide classes of processes. Our goal is a systematic classification of 
the many FC transitions that  the theory allows, according to their specific sensitivity to 
the nature and heaviness of the particles running in the loops. 

To begin with, let us consider the effective electroweak vertex d(p')P,(q)AU(q)s(p), 
where A u = A~T ~ represents the gauge field (3', Z ° or gluons) with fermions in the 
representation T a, and q = p - # is the momentum transferred in the transition. With 
the help of gauge and Lorentz invariance we can then write 

r"(q) = A1 (q:g"" -q'q~') Fl(m~,q:) %(1 - 7 5 )  

+ A: msq  F2(m , q2) + 3"5) 

+ A': mdq. ¢)  -3"5) 

+ Ao m k  Fo(m~,q 2) 3'"(1 -3'5) , (1) 

where the constant coefficients A~ depend on the interaction strengths. The form factors 
Fk depend generally on the masses and momenta of the real and virtual particle involved 
in the transition. If the gauge current is conserved (photon and gluon penguins) then 
F0 = 0. The form factor Fo is therefore present only for Z ° induced verteces. We will 
refer to Fi and F2 as the charge and dipole form factors respectively. In the following we 
will also neglect md compared to rn~ and therefore discard the third term in eq. (1). 

Let us now consider for instance the semileptonic transition s ---* d e + e-. The penguin 
diagram contribution to this process, once the photon and Z ° propagators and their 
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W, ¢ u,c,t s d s ~ .  

d 

W. ¢ ~ . ~  

Figure 1: Standard Penguin and Box diagrams contributing to K + --* ~r+vP. 

couplings to to the lepton current are included, can be written as 

{ 
+ ~ F~ ° T + P T ° V  tt 

\ m w /  

_ _  j Q  # flL 
+ sin 2 8w \ m w /  

where a is the electromagnetic coupling constant. The Lorentz properties of the quark and 
lepton currents jQ.L are explicitly indicated. The factors hi - I(i~K~g denote the product  
of the CKM angles involved in the transition and a sum over i = u, c, t is understood. 
It is worth recalling that  the form of eq. (2) follows from the conservation of the lepton 
current O,J L~ = 0. Before discussing some properties of the three form factors, we have 
to consider also the contribution arising from box diagrams, as in fig. 1. One finds 

~o~(~ -~ d ~%-) ~ v ~ s i n ~ 0  ~ ~ B v-A v-~ , .  i \ m w /  

From the form of eq. (3) it is evident that  the box contribution can be included 
in eq. (2) together with the Z ° penguin form factor to give F~ = F0 + B. In turn, the 
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Z ° contribution to the transition amplitude has been already split in two parts. The 
component proportional to the electron weak isospin (T3) contributes to F~, whereas that 
proportional to the lepton electric charge (g2 sin 2 0w) contributes to F~, together with the 
photon penguin form factor. The short-distance part of the process K --* ~re+e - can then 
be described by three gauge invariant functions F~, F2 and F~, whose specific dependence 
on the quark masses and momenta we will discuss in the following. Although each of 
the form factors does not correspond to an observable, they must be separately gauge 
invariant since they are proportional to different interaction strenghts and/or different 
currents in the amplitude. 

These considerations, inferred from the discussion of a specific transition, depend in 
fact very little on it. Changing the particles involved in the process may modify overall 
factors in the amplitudes, as coupling strengths, select only some of the components and, 
of course, modify their detailed functional form. However it does not affect, as we will 
see, some characteristic behaviours of the form factors, which are related to the struc- 
ture of the currents involved. One may be therefore tempted to systematize the study of 
these loop-induced phenomena by constructing a basis of gauge invariant and, to some 
extent, process independent functions which are common blocks of apparently unrelated 
processes. Following this approach it may become easier to identify and isolate the effects 
related to the presence of heavy quarks, or more exotic physics, and identify those pro- 
cesses that are potentially promising for their search. The "Penguin-Box Expansion" of 
ref. [3] is in fact an attempt toward a systematic study of FCNC processes based on these 
considerations. We will not enter here the many technically subtle aspects of such an 
analysis (for a review we refer the reader to ref. [4]). We will however show that even the 
simple knowledge of some semiquantitative properties of the effective amplitudes, eqs. (2- 
3), gives us already enough information to justify such an investigation. The crucial point 
rests in a remarkable property of the form factor F1 in the photon and gluon penguins. 
Studying the "infrared" (m i2/mW,2 q2/m~v __, 0) behaviour of the various contributions to 
this term, one can in fact convince oneself that there exist a component which diverges 
logarithmically. This shows that F1 exhibits a genuine logarithmic dependence on the 
internal quark masses, which is absent in the other form factors. One finds 

/0 F1 ~ const dx x(1 - x) In mi m~v + /~1 (4) ' 

where the coefficient of the logarithm is gauge invariant since no other pure logarithmic 
terms arise in the amplitude. When the GIM mechanism is applied, t he  component 
/~1 vanishes quadratically in the limit ml --~ 0, analogously to F2, F0 and B. These 
contributions, unlike the first term in eq. (4), are dominated by the exchange of heavy 
quarks and, for light quark decays, we may neglect their q2 dependence altogether (see 
eqs. (2-3)). 

This feature shows two different realizations of the GIM mechanism: a power-like 
suppression (Am~/m~v) in the F~, Fo and B terms; a logarithmic "soft" suppression in 
F1. As a consequence, in a world of light quarks (m~ << m~v ) the component F1 dominates 
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the amplitude, and a quite good estimate of the process is obtained by solely computing 
the logarithmic term in eq. (4). Life was somewhat easier in the past, when the top quark 
was still believed to be light! The presence of a heavy top makes the power terms in the 
amplitude a priori no longer negligible, and calls also for a reanaJysis of the QCD effects 
in light quark transitions (for an extensive discussion see ref. [4]). 

It is interesting to consider the question of the interplay between a heavy top and 
light quark decays with more detail. Does the knowledge of this "anomalous" behaviour 
of F1 tell us still something about the sensitivity of FCNC processes to physics scales 
much heavier than the few GeV of the light quarks? In order to answer this question one 
has to consider separately s -+ d (a) and b ~ s (b) transitions. In fact, it is well known 
that in processes of the type (a) top exchange is disfavoured by CKM angles, namely 

IA, I_  IIq K;al 
- -  ~ sin 40c ~ 10 -3 (5) 

IAcl- Ig.IfSdl 
In spite of that, for m, > 90 GeV we have 

m 2 ~ 2  m~v 2 
In me 

IA'lm- w m--T >> IAol (6) 

and therefore top and charm exchange in the form factors F2, F0 and B can be of com- 
parable size. However, whenever F1 is present we have 

IA, I In m---~-~ << IAol In rn~v (7) 

and light quark exchange largely dominates. 

In conclusion top exchange is negligible whenever a soft GIM suppression is present. 
This amounts to saying that a necessary condition (albeit not sufficient !) for sizeable 
effects of the top quark in FCNC s ~ d transitions is to consider processes which cannot be 
induced by electromagnetic and/or gluon penguins. Without much effort, we have reached 
indeed a valuable result. This simple criterium is in fact quite selective and allows us to 
focus our attention on a limited class of processes. 

However, before proceeding to the discussion of two explicit examples, it is worthwhile 
to remark that this criterium does not apply to CP violating s ~ d transitions. In fact, 
at 0(sin 30c) the physical phase in the standard paraxnetrization of the CKM matrix 
appears only in the I~'~b and Ktd entries. It is then obvious that a loop induced CP 
violating transition involving virtual up-type quarks must include top exchange. In other 
words, although the reM part of the amplitude is dominated by the exchange of light 
quarks (an example is KL,S ---+ rrc), the imaginary part is not, and we can roughly write 

Re---A < 0 ~ 10 -3 (8) 

The smallness of CP violating effects in the SM is therefore simply justified. Recalling 
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our discussion of the relevance of the top quark for the various form factors, it follows 
immediately that in the calculation of e'/e one cannot neglect anymore Z ° penguins and 
box diagrams compared to the photon and gluon penguins, whose imaginary parts are 
CKM suppressed. A re-evaluation of el/e in the presence of a heavy top has been performed 
by different authors in the last few years [4]. However, what is still missing to make the 
analysis complete (at least for what concerns the short-distance part) is the inclusion of 
the dipole components (form factor/;'2) of the gluon and electromagnetic penguins. 

Traditionally, only the component F1 of the gluon penguin has been included in the 
evaluation of e'/e, because of the soft GIM suppression. As we have seen, this is a good 
approximation only when all the quarks are light on the weak scale. The same argument 
that compels us to consider Z penguin and box diagrams applies a priori to the dipole 
components of the photon and gluon penguins as well. Even more so for the latter which 
contributes to the leading gluon diagram. The size of the effect depends however on the 
complete analysis of the QCD renormalization and mixings of the new operators with 
those up to now considered, and, more crucially, on the evaluation of the hadronic matrix 
elements. At least two additional operators have to be included in the effective Lagrangian 
for A(KL,s ---* 7rTr) 

-- 7r \ q~ ] ($R ia'" dL) ~ e s ( f  % f )  , (9) 
]=u,d,s 

Oalu ~ as [msq~,~ 
= T \  q2 )(~nia~'~'T ~dL) ~ (f 'T,T ~ f ) .  (10) 

f =u,d,s 

Their Wilson coefficients at the weak scale read respectively (,4 = --(GF/V/2)tt Ci (.9~) 

x2(2 - 3x) x(Sx 3 - 3x 2 - 12x + 7) (11) 
Cph(mw) -- ~ - -  1) 4 lnx  -I- 12(x -- 1) 4 ' 

3x x (x  s - 6x + 3x + 2) (12) 
Cgt,,~(mw) - 2 ( x -  1) 4 lnx  + 4 ( x -  1) 4 ' 

2 2 where x = ra t /m w. 

The absence of these operators in the existing analysis of el/E was pointed out by 
the present author about two years ago [5]. One attempt to estimate their effect has 
recently appeared. The authors of ref. [6] study the effect of the operator in eq. (10) 
and conclude that its contribution to d/e is about one order of magnitude smaller than 
that induced by F1 in the gluon penguin. The authors include the multiplicative QCD 
renormalization neglecting any mixing effect. The QCD induced mixing of the operators 
in eqs. (9-10) with four-quark operators of the type (SL~[IzCL)(CL%zdL) O C C U r s  in fact at 
the two-loop level. However, if we are allowed to make a~ analogy with the case of the 
b ~ 8 7 decay, this effect can be large, since gluon renormalization may bring back a soft 
GIM suppression, absent in eqs. (11-12). Due to the presence of the charm quark, the 
two-loop mixing can be competitive in size with the one-loop operators in eqs. (9-10). 
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A study of the renormalization of the complete set of effective operators, together with a 
consistent estimate of the hadronic matrix elements (~r~r I Oph, gz~, IKI is required in order 
to ascertain the relevance of these additional contributions to d/e in the SM. 

Coming back to CP conserving s --~ d transitions, we have learned that in order to 
uncover possible effects due to heavy particles running in the loop (the importance of the 
top quark is strictly related to the potential relevance of other non-standard physics, as 
we will explicitly see for supersymmetric models) we have to search for processes which 
cannot be induced by electromagnetic and /or gluon penguin diagrams. Two examples 
of such processes are (i) KL --* #+#- and (ii) K + --* ~-+v~. Both decays can only occur 
through Z ° penguins and box diagrams. While for the second process this conclusion is 
obvious, in the case (i) it follows from the conservation of the vector component of the 
lepton current: (01 ~'~'~hd Ig(q))(P%m) "~ q"(P7gg) = 0. 

Experimentally, there exist two recent measurements of B R ( K  ° --+ #+#-), namely 
(8.4 4- 1.1) x 10 -9 (KEK) [7] and (7.0 4- 0.5) x 10 -9 (BNL) [8]. Since this transition is 
measured, and since the short distance contributions are dominated by top exchange, we 
would expect this process to be a good probe for indirect top searches. Unfortunately, 
long-distance (LD) contributions turn out to be dominant. The transition can in fact occur 
via a two photon intermediate state. The absorptive part of this long-distance effect can 
be estimated by convoluting F(KL --+ "~) and F('~7 ~ #+#-).  Using the measured value 
of BR(KL ~ ~/~/) [9] one obtains BR(KL --* #+#-)~bs = (6.8 4- 0.3) × 10 -9. Since the 
absorptive part of the short distance contributions is negligible (light quark exchange is 
subleading), the value above is in fact a lower bound for the total branching ratio. 

In order to use this information to bound the (dispersive) short-distance component, 
we should get a handle on the dispersive part of the long-distance contribution (off-shell 
photon form factor). This task would be made easier if we had data on the invariant 
mass distributions for KL --* e+e-e+e -,  for which only recently the branching ratio has 
been measured at the level of 5 × 10 -s [10], in agreement with the SM expectation. Using 
the better experimental knowledge of KL --~ e+e-'~, one can nevertheless attempt an 
extrapolation to the 2")' off-shell form factor relevant for KL --* #+#-. With the help of 
vector meson dominance the authors of ref. [11] estimate the dispersive part of the long 
distance component to be at most a few percent of the absorptive part. Using this result 
they study, as a function of the top quark mass, the range of values of BR(KL --+ #+#-) 
allowed by our knowledge of the relevant electroweak parameters. By comparing the 
results of KEK and BNL with fig. 2, taken from ref. [11], it is apparent that no definite 
statement on the top quark mass can be presently made. In addition to the uncertainty 
in the evaluation of the LD contribution, another source of uncertainty is related to our 
poor knowledge of Re{K~dKts }. A more recent analysis of the short distance contributions 
to KL -+ #+/~-, which takes into account the combined constraints coming from other 
measured FCNC processes and CP violating transitions has been performed in ref. [3]. 
For m, ~ 100 GeV the branching ratio induced only by short distance contributions can 
be as small as 3 × 10 -1°, while for m, ~ 200 GeV, for which the preferred values of the 
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Figure 2: The allowed range for BR(KL ~ #+#-)  is shown as a function of the top mass, 
for BRunit = 6.8 x 10 -9. The figure is taken from ref. [11]. 

CKM phase lie in the first quadrant, it does not exceed 2 x 10 -9. It is clear that until 
we obtain a precise evaluation of the LD contributions, this decay cannot help us in the 
study of the subleading short-distance effects. 

At variance with KL ~ #+#-, the decay K + --+ ~r+vP can be considered from the 
point of view of the theory a "clean" process. In fact, a property of the latter decay which 
is crucial for our short-distance analysis is that long-distance contributions have been 
shown to be negligible [12]. Short-distance contributions exhibit also some nice features. 
In addition to the hard GIM suppression, which makes top exchange competitive with 
charm exchange, it turns out that QCD corrections suppress the leading logarithmic terms 
(,,~ x~ In xc), thus further decreasing the charm contribution by about 30% [13]. Finally, a 
partial cancellation of the subleading (-,~ x~) terms, occurring between the Z ° penguin and 
the box diagram, makes this process less sensitive to next-to-leading QCD corrections. 
Unfortunately, we do not have yet experimental evidence for this decay. When summing 
over three light neutrinos, the expected branching ratio varies between 1.5 and 8 x 10 -1°, 
for m t <  200 GeV (for a detailed discussion see ref. [3]). The highest values are reached 
for the CKM phase in the second quadrant and mt ,~ 150 GeV. The present experimental 
bound is 4.4 x 10 -9 [14], about one order of magnitude above the needed sensitivity. In 
view of the interesting properties of this process, an experimental effort to cover the 
present gap between measurement and theoretical expectations is more than justified. 
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With the previous two examples we have seen that the Kaon system may offer the 
possibility of testing physics at the Fermi scale, provided we choose processes in which 
light quark exchange is strongly GIM suppressed. This amounts to disregarding FCNC 
transition which can be induced by electromagnetic and/or gluon penguins. This criterium 
is for the Kaon system quite selective. Is the distinction between softly and strongly GIM 
suppressed transitions as effective when considering heavier meson systems ? 

The preferred sector for investigating indirect effects of weak scale physics is that of 
FCNC transitions involving the B mesons. If we consider loop-induced b -* s transitions, 
charm exchange is no longer favoured by CKM mixings. In connection to that and because 
of the heaviness of the B meson long-distance contributions may be expected to play a 
less relevant role than in the Kaon system. A further consequence of the heaviness of 
the b-quark is that inclusive B-decays can be reliably modelled by quark decays (non- 
spectator diagrams are wave-function suppressed: f~ /m~ ,.~ 1/400). Finally, when the top 
quark exchange dominates the amplitude, then the SM prediction for the branching ratio 
depends very little on the uncertainties related to our poor knowledge of the relevant CKM 
angles. In fact, by normalizing the various transition to b --~ ce~,, from the unitarity of the 
three-generation CKM matrix one obtains ]Ii~sKtbl/Ilicb] = 1 + O(sin 48c). Therefore, 
the short distance components of the transitions depend, including QCD corrections, only 
on two parameters: mt and AQCD. 

On the other hand, if a soft GIM suppression is present (once again via electro- 
magnetic and gluon penguins), the sensitivity to heavy scales may be hindered by the 
relevance of the charm (or external momenta) contribution : IK*~Kcb In xc[ ~ [I(~K~bl x~. 
We expect therefore that , even in the B-sector, the processes that are most promising for 
indirect searches of exotic heavy physics are those which cannot be induced by the form 
factor F1 in the effective b F,A ~ s vertex. To this class of processes belong B ° --+ ~-+T- 
and B ~ X8 u~, in analogy with the Kaon case. However, because of the combined effects 
of low branching ratios and low detection efflciencies these two processes do not offer at 
present concrete possibilities of experimental test. We would like instead to focus our 
attention on the radiative B --~ X~ + V transition, where a real photon is emitted together 
with a strange hadronic "jet". At the quark level, this decay is induced by the effective 
b --~ s + ~/transition, which, because of the on-shell photon, can occur only through the 
dipole form factor F2 (non-spectator tree-level contributions, which would be dominant 
for the analogous transition in the Kaon sector, are here negligib!e). As a consequence, 
the genuine electroweak amplitude is strongly GIM suppressed, and therefore sensitive to 
virtual top effects. 

Surprisingly, QCD corrections turn out to play an important role. A soft GIM sup- 
pression in fact appears when an additional gluon loop is present, mixing the renor- 
malization of the original dipole operator with effective four-quark operators of the type 
(bLffUCL)(~LT~,SL) =-- 01. The presence of large logarithms involving the charm quark mass 
enhances the two-loop contribution which turns out to be comparable to the one-loop 
electroweak amplitude even for a heavy top [15]. This effect, confirmed by detailed tenor- 
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Figure 3: Standard model expectations for some b --* s transitions as a function of the top 
mass. Dotted lines do not include QCD corrections. The figure is taken from ref. [21]. 

malization group analysis [16], enhances the branching ratio for the i n c l u s i v e  b ~ s + 7 

transition above 3 x 10 -4 for mt  > 90 G e V ,  although it smooths the original top depen- 
dence (see fig. 3). 

Although the photon signature is a welcome feature of this decay, comparison with 
experiment is not straighforward. Assuming the dominance of two-body intermediate 
state production via a Kaon resonance and a photon, the lightest exclusive final state 
allowed is K*(892) + 7, followed by K* --~ K~r. The theoretical estimates of the branch- 
ing fraction RK* ~ F(B -~ Ii*7)/r(B ~ xsT) vary between 5% and 40% [17,18]. The 
difficulty in obtaining a reliable result rests on the fact that non-relativistic quark models 
are unsuitable for describing the overlapping between the B meson and the K* wavefunc- 
tions since the s-quark is relativistic. At the inclusive level, one may try to detect the 
most energetic photons, having care to cut at photon energies Ez £ 2.25 G e V ,  in such 
a way to exclude contamination from the background decay B --~ D*(2010) + V. This 
would nevertheless include the first few Kaon resonances and may amount to measuring 
a substantial fraction of the inclusive transition [17] (compare also with the analysis of 
ref. [18], based on the study of b ~ s7  + gluon) .  As for the lightest exclusive mode, 
assuming a phenomenologicM model for the B meson wavefunction Ali and Greub [18] 
estimate 0.1 < RK* < 0.2~ for any value of mt  in the 100 - 200 G e V  range. 



171 

These expectations have to be compared with the already close experimental bounds. 
The best experimental limits on the b -+ s + 7 process come from the recent results of 
CLEO II [19]. At the inclusive level, based on the analysis of ref. [18], they obtain 
BR(b --* 8 + 7) < 8.4 x 10 -4, whereas for the lightest exclusive mode they have reached 
the limit BR(B ~ K* +'y) < 0.92 x 10 -4. If, somewhat conservatively, we take RK* = 10% 
we see that  the two bounds above are roughly equivalent and are only a factor 2-3 away 
from the SM expectations, depending on mr. This can be seen from fig. 3 where we 
report, as a function of the top quark mass, the SM expectations for various b --+ 
transitions. One can recognize the different sensitivities to the top mass and to the 
leading QCD corrections, according to the discussion presented in this section. A more 
detailed description of the processes shown in fig. 3 can be found in refs. [20] and [21]. 

After these introductory considerations, in the next section we will examine the 
impact that  these FCNC processes have on minimal supersymmetric extensions of the 
standard scenario. In order to include the leading logarithmic QCD corrections in ex- 
tended frameworks it is convenient to observe that,  if (i) no new effective operators are 
added to the basis relevant for the process considered (this is, for instance, the case if all 
the additional particles exchanged in the loop are "heavy" with respect to the charac- 
teristic scale of the process), (ii) possible additional tree level contributions to effective 
four-fermion operators, like O1, are suppressed (a typical case is when Yukawa couplings 
are involved), and (iii) the newly exchanged particles can be integrated away together 
with the W gauge boson (we will assume the same range of applicability as for the case 
of the top quark), then, it follows that  (a) the new contributions to the amplitude are 
only multiplicatively renormalized (no new induced mixing effects), and (b) the QCD 
correction factors are the same as for the SM amplitudes. Conditions (i) and (ii) are 
generally satisfied in the models considered here. In addition, we are presently interested 
in mass ranges for the new particles which satisfy (iii). In this case, the extension of QCD 
corrections tonon-s tandard contributions is straightforward and does not require further 
work (for a more detailed discussion see ref. [20]). 

3. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL 

In this section we examine a particularly simple supersymmetric (SUSY) extension of 
the SM, derived from spontaneously broken minimal N=I  supergravity (for a review see 
ref. [22]). Spontaneously broken N=I  supergravity theories with a residual N=I  global 
supersymmetry (SUSY) preserved down to the Fermi scale represent the most attractive 
possibility of solving the naturalness problem in the scalar sector of the SM, while incor- 
porating gravity in a unified picture of all elementary interactions. If, unquestionably, 
the direct searches for supersymmetric particles at LEP, CDF, LHC and SSC constitute 
the primary tool in this effort of testing low-energy SUSY, nonetheless its manifestation 
through virtual effects in FCNC rare processes is still of interest and, at any rate, com- 
plementary to the other direction. We will show that some bounds on rare B decays 
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reachable by CLEO II conceivably in the near future can be translated into limitations on 
the available SUSY parameter space which are comparable to those obtainable at LEP. 

Even limiting ourselves to low energy theories derived from spontaneously broken 
N=I  supergravity, we are faced by a host of models which substantially differ in the 
nature and number of their free parameters and, in particular, on their predictions for 
the topic of interest for us here, i.e. heavy flavour physics. The first major distinction 
concerns the way one avoids a fatally short proton decay lifetime. It is known that the 
supersymmetrized version of the SM allows for the presence of baryon and lepton violating 
terms in the superpotential. Here we take the most "conservative" attitude of forbidding 
all these dangerous terms by imposing a discrete symmetry, known as R-parity, which 
discriminates the ordin.ary particles from their SUSY partners. Even restricting ourselves 
to SUSY models with conserved R-parity, we are left with a very large number of free 
parameters in the sector which softly breaks the residual N=I  global SUSY. To further 
reduce this arbitrariness we consider the simplest possible SUSY version of the SM where 
one introduces the minimal number of superfields necessary to supersymmetrize the SM 
and chooses a flat K~hler metric [22]. In this minimal SUSY version of the SM only four 
additional new parameters appear. Moreover, it can be easily seen that the Higgs sector 
of such a minimal SUSY model with two Higgs doublets, needed to provide a mass to both 
the up- and down-quark sectors, is not large enough to allow for the required electroweak 
symmetry breaking at the tree level. If one insists on the minimal prescription of only 
two doublets in the Higgs sector, then the correct spontaneous breaking of SU(2) x U(1) 
can be achieved radiatively, i.e. making use of the renormalization effects on the SUSY 
parameters (in particular on the Higgs masses) when evolving them from the superlarge 
scale of supergravity breaking down to ,,~ raw. Imposing such a radiative breaking creates 
a functional relation between the four SUSY parameters, on one side, and the weak scale 
on the other side. Hence, the number of independent free SUSY parameters in the MSSM 
with electroweak radiative breaking (RM$SM) further reduces to three. Our analysis 
will be performed in the context of the RMSSM. This is the SUSY model that offers 
the highest degree of predictivity and correspondingly the scenario where we can put the 
sharpest constraints on the parameter space. 

Let us briefly survey the structure of the model. As previously mentioned, mini- 
mality strongly constrains the structure of the Lagrangian which describes spontaneously 
broken N=I  supergravity models. The requirements that only the fields due to the super- 
symmetrization of the SM are present and that matter parity is preserved, immediately 
dictate the expression of the SU(3)c x SU(2)L × U(1)r. invariant superpotential: 

W = 'j ¢ ,j c h~LiE;H1 + I~H1H2, (13) huQ~U~H2 + hDQ~DjH1 + 

where the chiral matter superfields Q, U c, D ~, L, E ~,//1 and H2 transform as follows under 
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SU(3)c x SU(2)L X U(1)y: 

Q = (3, 2,1/6); U c - - ( 3 , 1 , - 2 / 3 ) ;  D ~ - ( 3 , 1 , 1 / 3 ) ;  
i = (1,2, -1/2) ;  E ~ - (1, 1, 1); (14) 
Hi ---- (1, 2, -1 /2) ;  //2 ---- (1, 2, 1/2) . 

Isospin and colour indices are contracted in the usual way. The couplings hu, hD and hL 
are 3x3 matrices in the generation space (i,j  = 1, 2, 3). 

The expression of the soft supersymmetry breaking operators turns out to be quite 
simplified by the assumption of having a fiat K&hler metric. At the grand unified scale 
Mx they appear as: 

i) a cubic gauge-invariant polynomial in the complex scalar fields: 

S = mA [huQU--CH2 A- hDQDCH1 + hELECH1] -F Bm#H1H2 + h.c. (15) 

The tilde denotes here the scalar component of the chiral matter superfields Q, U c, 
De: L and E ~, while, for simplicity, we denote by H1 and/ /2  also the scalar com- 
ponents of the Higgs superfields Hi and H2. A and B are c-numbers and, in the 
presence of a fiat K/~hler metric, the equality B = A - 1 holds; 

ii) a universal mass term for the scalar components yl of the chiral superfields: 

M 2 - - 2 ily l 2 ; ( 1 6 )  

iii) gaugino Majorana mass terms: 

M ( A I A  1 -3 I- A2A 2 + A3A3) + h.c. , 

~5 
(17) 

where ,)11, )~2 and A3 denote the two-component gaugino fields of U(1)y, SU(2)L and 
SU(3)c, respectively. In eq. (17), the grand unification constraint of equal gaugino 
masses at Mx has been added to the usual requirement of minimality. 

Hence, the class of minimal theories which we consider here is described at the grand 
unification scale by the Lagrangian: 

LMSSM = W + S + M ~ + M + kinetic terms (18) 

This Lagrangian contains four new parameters in addition to those which are already 
present in the SM, i.e. A, g, m and M (for the present discussion we neglect CP viola- 
tion effects and consider all parameters to be real). The correct electroweak breaking is 
achieved on the vacuum: 

where ~ and g denote the scalar quark and lepton fields: respectively. The tree-level scalar 
potential does not produce the correct vacuum. On the other hand, in order to discuss 
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the physical implications of LMSSM at low energy (i.e. at the electroweak scale), we need 
to renormalize the relevant parameters in eq. (18) from Mx down to N row. Imposing 
that the renormalization group improved potential leads to the vacuum in eq. (19) at mw 
further reduces the number of genuinely new parameters introduced by SUSY to three. 

Obviously, in addition to these parameters, our results will depend also on the mass 
of the top quark, ms, as was already the case in the SM. The constraints we derive from 
rare B physics will be reported on a two-dimensional SUSY parameter space for fixed 
values of rnt and of the third remaining SUSY free parameter that we choose to be the 
ratio of the vacuum expectation values (VEV) of the two doublets HI and//2,  i.e. v2/vl. 

The whole SUSY mass spectrum can be expressed in terms of the three SUSY pa- 
rameters and mr. We focus here only on the structure of the squark mass matrices, while 
referring the interested reader to reviews on the subject for a study of the chargino and 
neutralino mass matrices [23]. 

The 6x6 matrix of the Q = 2/3 sector is formally written in terms of the 3x3 
submatrices MuL, Mv~ and M~rLa as follows: 

( Mv~MtUL M~R ) (20) 

The expression of the above 3×3 blocks is very simple at the superlaxge sca~e Mx where, 
roughly, the breaking of N = 1 supergravity takes place and where we start the running 
of our parameters. At that scale (unbroken SU(2)L × U(1)y): 

Muz Mtuz = m 21 
MCu~MuR = m 2 1 (21) 

The renormalization of M~r from Mx down to the electroweak scale produces relevant 
effects. At the low-energy scale, the 3 x 3 blocks can be written as: 

(MuLM~L)ij = a~jM 2 + bijm 2 + cqm2A 2 + dijmAM 

2 sin20w) 6ij 

2 ( M~&R)ij 

(MtRMuR)ij 

= (eijM + fijmA + #/tan fl)(Mv)ij 

(22) 

(23) 

= p~jM 2 + qijm ~ + rijm~A 2 + 8~jmAM 

where i , j  are generation indices, Mcr denotes the up-quark mass matrix, tan ~ = v2/vl 
and the dimensionless matrix coefficients a, ..., s depend only on the gauge and Yukawa 
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couplings and are determined by numerical solution of the RG equations driving the 
renormalization of the SUSY parameters from Mx down to Mw. Taking a look at the 
expression of these equations (see, for instance, App. A of ref. [21]), one can see that 
the various coefficients in eq. (22) receive contributions from both the up- and down- 
quark Yukawa couplings, at variance with the coefficients in eq. (24) which are affected 
by contributions only from the up-quark Yukawa couplings. Hence, when considering the 
diagonal up-quark basis (i.e. the up-quark basis which diagonalizes MuMtu) one simulta- 
neously obtains the diagonalization of the Mtvn MuR block in eq. (24), while MuLMtvL, 
having contributions proportional to MDMtD, remains off-diagonal. The amount of this 
"lack of diagonality" traces back to the difference in the rotation for the diagonalization 
of the up- and down-quark mass matrices, i.e. the effect is roughly proportional to the 
elements of the Cabibbo-Kobayashi-Maskawa mixing matrix. This is the key element to 
understand a peculiarity of SUSY theories in the FCNC sector. If one considers a ver- 
tex gluino-quark-squark (g - q - q), for instance ~ - u - fi, the absence of simultaneous 
diagonalization in the u and ~ mass matrices leads to the possibility of a ~ converting a 
u-quark into a ~-squark at its vertex. Gluinos can mediate FCNC [24]. The same applies 
to neutralino vertices in general. For the purpose of our analysis, there is a second rele- 
vant observation on the ~ mass matrices to be made. The down squark (d) mass matrix 
has a structure similar to that of My replacing Mu by MD, with some new values of the 
e, ..., s dimensionless coefficients established by the RG equations (the coefficients a, ..., d 
remain unchanged) and with a different sign in front of the terms proportional to M~ in 
eqs. (22-24), namely: 

(M LM L),j 

M 2 ( DLR)IJ 

(M; 

= aijM 2 + bijm 2 + cijm~A 2 + di jmAM 

= (e',~M + f;'jmA + #tan fl)(MD),j (26) 

, 2 , 2 , 2 2 s~jmAM = pijM +qijm +rijrn A + 

+ ( M t o M D ) , ~ - M ~ c o s 2 ~ ( 3 s i n 2 O w ) ' ,  j (27) 

There is a major difference in the structure of M3 and M~: the presence of terms 
proportional to mt in the off-diagonal block 2 (M3LR) of M3 (eq. (23)). Given the large 
value of mr, such t'ntn mass entry tends to produce one light (resp. one heavy) mass 
eigenstate ~a (~6) in the up squark sector, which is mainly a combination of t'n and t'R. 
Just requiring m~a to be positive forces the elements along the diagonal, and, hence, rn 
and/or M to be rather large. Consequently also the diagonal elements of M~ tend to 
become correspondingly large, thus preventing some eigenvalue to be light. In addition 
to this effect, the presence of the D-term contributions, proportional to M~ (which also 
become relevant for large mt since vx ~ v2 is favoured) increases the average values of m~ 

2 while decreasing ma. 
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Since the d,squark masses cluster about an average value determined by the size of the 
elements along the diagonal (with the possible exception of one eigenstate, lighter, due the 
off-diagonal renormalization effects induced by the top quark in the MDL block), they turn 
out to be substantially heavy for most of the parameter space. These considerations are 
important, since the d-squarks eigenstates appear together with the gluinos, in potentially 
relevant contributions to the loop B processes here discussed. This feature, together with 
the rapidly growing bounds on gluino and squark masses from collider data, is at the root 
of the general loss of relevance of FCNC gluino mediated amplitudes in the RMSSM for 
rare B decays. As a consequence, a complete study of all the possible SUSY contributions 
to a given process is required. 

In the SM the b ~ s and b ~ d transitions are dominated by one-loop contributions 
with the exchange of a virtual W and the top quark. When supersymmetry is considered 
several competing sources of FCNC are present. To begin with, in SUSY models the 
Higgs sector is richer than in the SM, since at least two Higgs doublets must be present. 
Consequently, there exists at least one physical charged scalar H -  which can be exchanged 
in the one-loop contributions to b --* s or b ~ d, together with an up-quark. The second 
obvious source of FCNC comes from the supersymmetrization of the W and the charged 
Higgs contribution, where the up quark is replaced by an up-squark fi and W -  and H -  
are respectively replaced by their SUSY partners, w-ino (W-)  and higgsino (H-) .  To be 
more precise, since W -  and H -  are only current eigenstate, the eigenstates of the 2 × 2 
charged fermion mass matrix, the so-called charginos (~-) have actually to be considered. 
A less obvious source of FCNC, typical of SUSY theories, comes from the FC vertices 
q _ ~, _ ~0 or q - ~' - g, where ~0 is a neutralino and 9 is the gluino. This, as we have 
previously mentioned, is due to a characteristic renormalization effect of the quark and 
squark mass matrices which arises when the effective low-energy Lagrangian is derived. 

Thus, in SUSY there are five classes of one-loop diagrams which contribute to FCNC 
b --~ s and b --* d transitions. They can be distinguished according to the virtual particles 
running in the loop: 

1) W -  and up-quarks; 

2) H -  and up-quarks; 

3) ~-  and up-squarks; 

4) ~o and down-squarks; 

5) .~ and down-squarks. 

As we said, the actual novelty of SUSY in the context of FCNC is the possibility for gluinos 
and neutralinos to realize flavour changes at their vertices with quarks and squarks. Gluino 
exchange in particular looks very promising for a possible SUSY enhancement in rare B 
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physics. Indeed it was shown [25] that in the radiative decays b --* s + 7 and b --* s + g the 
SUSY-GIM mechanism realizes a suppression comparable to that present in the SM, so 
that, taking into account the presence of the strong couplings in the case of 9 exchange, 
one could correctly argue that such FCNC radiative b decays should be SUSY enhanced. 
This may remain true in some low energy SUSY realizations, however this hope is not 
fulfilled in the t~MSSM [21]. The reason is twofold: on one hand, the search for 9 and 
at CDF has pushed up the lower bounds on their masses at a level of 100 GeV and, on 
the other hand, in the RMSSM there is a general tendency for the down squarks to be 
heavier than the up squarks, as we have previously discussed. Notice that for the other 
class of superpenguins with virtual 7 or g exchange, producing b ---* s l + l  - or b --~ sqq, 

the standard GIM mechanism is soft whereas the corresponding SUSY-GIM suppression 
produces effects comparable to those which are present in b ~ s7  and b ---+ sg. Hence, 
in this case even the a priori hope of a substantial gluino enhancement is absent. In 
conclusion, in the RMSSM the contributions with 9 and d exchanged in the loop do not 
represent the leading contribution in FCNC b decays like b --~ sT, b --~ sg~ and b ~ sqq. 

Clearly the role of neutralinos is even more negligible given the smallness of the their 
couplings in comparison with the strong coupling of the gluinos. 

The chargino and charged Higgs exchanges constitute the dominant SUSY contribu- 
tions to rare B decays [21]. The best lower bounds on their masses come from LEP and 
amount roughly to 40 GeV. Notice that the lower bound of CDF on squark masses of 
O(100 G e V )  refers to the case of degenerate squarks, but does not rule out the possibility 
of a single squark much lighter than all the remaining squarks. In view of our previous 
considerations on the large off-diagonal element {L -- t'R in / ~  it is indeed conceivable 
that one light stop (of, say, 25-30 GeV) may exist. Obviously, its exchange in a loop with 
a light chargino represents a potentially important contribution in FCNC rare B decays. 

We come now to a quantitative analysis of our results. It is useful to recall that, apart 
from the implementation of the bounds on the SUSY particle masses, what makes a strict 
selection of the points at disposal in the SUSY parameter space is the requirement of the 
electroweak radiative breaking [26]. We shall show how much of the SUSY parameter 
space is already ruled out by this request and which further reduction is obtained by 
imposing the experimental bounds on rare B decays. 

In our view b --* s + 7 represents one of the most interesting FCNC rare B decays. 
The presence of large QCD corrections in the SM has been previosuly discussed. In this 
section we shall point out that this process offers the best chance in rare B physics to 
constrain the SUSY parameter space in a way complementary to the results achievable in 
direct accelerator searches. Most of the material presented in this section is taken from 
ref. [21] and we refer the interested reader to that work for a more detailed discussion. 

In fig. 4 we give a quantitative content to our previous considerations on the relative 
importance of the various SUSY contributions. The individual components of the ampli- 
tude for b --~ s + % corresponding to the exchange of the charged Higgs, the charginos, 



178 

t 

ID 

t 

v 

.8 

.4 

0 
0 

.I 

-.i 

0 

. . . .  ! . . . .  I 

H v2/v, = 2 - 

. . . .  I . . . .  I 

300 600 

m H- (GeV) 

. . . . .  I . . . .  I 

vdv~ = 2 

° . . 
l 

. l , . l . . . . .  

, .  ~I,L!~!.5~.~J~.~ 

.5 

0 

--.5 

o 

.005 

0 

- .005 

200 400 0 
7rt~ (GeV) 

r n t  = 1 3 0  GeV 
. . . .  I . . . .  

~- v,/~, = 2' 

. . . .  f , , , , I 

75 150 
m~ (CeV) 

i 1 I I f J i P 

40 80 
m~o (CeV) 

Figure 4: Ratios of SUSY to SM amplitudes contributing to b ~ s + 7 (leading QCD 
corrections are included). The figure is taken from ref. [21]. 

the gluinos and the neutralinos, are compared to the value of the SM amplitude. QCD 
corrections are included in these ratios. It is apparent from this figure that charged Higgs 
and chargino contributions dominate over the gluino exchange contributions, at least for 
charged Higgs masses below 300 GeV. A second remark concerns the size of the separate 
SUSY amplitudes in comparison with the SM amplitude. Fig. 4 clearly shows that the 
exchange of SUSY particles never prevails over the standard W exchange in .A(b --* s +'),). 
At this point it becomes crucial to determine whether there exists a definite pattern of 
interference between the SUSY and the SM contributions. The answer is exhibited in 
fig. 5. The figure shows the size of the various processes as a function of the soft break- 
ing mass m. The other parameter, needed to determine completely the structure of the 
model, is taken to be the gaugino mass M, which is varied between -t-200 GeV. The 
solid lines refer to the SM expectations for m t =  130 GeV, with the inclusion of the 
QCD corrections. The dotted areas denote the RMSSM predictions as a function of the 
SUSY breaking parameter m for two different values of v2/vl, 2 and 8 (fig. 5a and 5b, 
respectively). Remember that, having fixed v2/vl, two SUSY parameters remain free. 
This explains why to a certain value of m, more values of BR(b  ~ s + 7) correspond. 
The interesting feature of fig. 5 concerning BR(b  ~ s + 7) is that the RMSSM dotted 
band lies almost entirely above the SM solid line. The SUSY contributions to b --+ s + 
interfere positively with the SM contribution (Higgs exchange generally dominates) and 
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Figure 5: Expected branching ratios of various loop-induced b ~ s transitions in the 
RMSSM for mt = 130 G e V  and tan fl = 2, 8, as a function of the soft breaking 
scalar mass m. The horizontal solid lines represent the corresponding SM predictions 
(fs, = 150 M e V ) .  The figure is taken from ref. [27]. 

the conclusion is that in the RMSSM the B R ( b  ~ s + 7) is expected to be larger than 
the SM prediction, reaching a maximal enhancement of about a factor three. 

As discussed in sect. 2, the SM prediction for B R ( b  ~ 8+7) varies between 3 x 10 - 4  

and 4 x 10 -4 for 90 G e V  < m t  < 160 G e V  when the large QCD corrections are included. 
Hence the CLEO II bounds are only roughly a factor three larger than the l owes t  predicted 
value in the SM (a factor six when considering the very conservative value R* = 5% for 
the lightest exclusive channel). Given that B R ( b  --~ s + 7) is predicted to be even larger 
in the RMSSM, we conclude that an improvement of the present CLEO II bound by a 
factor 2-3 is of utmost importance in testing the SUSY contribution and the presence of 
the large QCD corrections in SM. 

To help clarifying the message concerning the RMSSM which should be drawn from 
the results depicted in fig. 5, consider the case of the top mass being measured at 130 G e V  

with an uncertdnty of 10 G e V .  The i n c l u s i v e  rate for b + a + 7 is then known in the 
SM with an accuracy of 10 - 15% (the accuracy of the leading-log estimate of the QCD 
corrections). In figs. 15-17 of ref. [21], we showed, for different combinations of the SUSY 
parameters, the regions of the parameter space allowed when the radiative breaking of 
SU(2) x U(1) is required, compared to the tiny regions which are left after imposing a 
bound on B R ( b  --* s + 7) just above the SM prediction. In fig. 6 we extend further this 
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Figure 6: The regions of the plane m~ - /~  excluded by SUSY searches at LEP I (area 
enclosed by the thick solid line), and the projected limits obtainable at LEP II (area below 
the dashed line), as reported in ref. [28], are compared with the regions excluded by: i) the 
sole requirement of radiative electroweak breaking (A); ii) a bound on BR(b  ~ s +3') 50% 
above the SM prediction (A+B);  iii) 15% above the SM prediction ( A + B + C ) .  The latter 
is equivalent to a measurement consistent with the SM expectation for mt = 130 GeV. 
The figure is taken from ref. [27]. 

analysis by directly comparing the potentiality of the radiative b --+ s + 7 decay with that 
of SUSY searches at LEP I and II. As an indicative example, we consider the area of 
parameter space which is excluded by a bound on BR(b  ---+ 8 + 7) at the level of 1.5 times 
the SM prediction and that excluded by a measurement consistent with the SM estimate 
(within 15%). For mt = 130 GeV the two cases correspond to inclusive branching ratios 
of 5.6 and 4.3 times 10 -4 respectively (BRsM ~-, 3.7 x 10-4). In fig. 6 we show the regions 
of parameter space excluded in the two aforementioned cases (dark shaded areas A + B 
and A + B + C) confronted with those excluded by present SUSY searches at LEP I (light 
shaded area) and by the projected searches at LEP II (area below the dashed lines). It is 
apparent that an improvement of BR(b  ~ s + 7) by at least a factor of two may offer a 
test of the SUSY parameter space which is comparable with what LEP II can produce. 

We finally come to what was considered in the past a kind of benchmark for rare 
FCNC b decays, i.e. b semileptonic decays with strangeness in the final products. In 
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fig. 5 we have reported the results concerning b --+ sg~ b -+ s£+i - ,  and B ° -+ T+T - 
in the RMSSM and, for comparison, in the SM. Although the last two decays exhibit 
a quite clear experimental signature, their rates are too small for the present machines 
and we must wait for the advent of B factories to exploit the information coming from 
these rare processes. For b -+ s~+~ - we can repeat what we said for b -=+ 8 + 7. The 
SUSY contributions interfere constructively with the SM W-exchange contribution for 
almost the entire available SUSY parameter space. This is due to the dominance of 
Higgs exchange in the dipole component of the amplitude. In fact, all the Higgs-induced 
contributions in which a helicity flip between b and s is not needed are suppressed by 
tan -2 +3. This is clearly shown by the snallness of the corrections to b ---+ svp, where the 
electromagnetic penguin, and therefore the dipole form factor, is missing. If the bound on 
the inclusive BR( b  --+ st+! - )  is pushed down to 0(10 -s) (which corresponds to bounds 
on exclusive modes, as B ~ K l+t  - ,  an order of magnitude lower [29]) a large area of 
the SUSY parameter space (comparable to that excluded by b --* sT) could be ruled out. 
This means that a significant result for SUSY can be achieved only by an improvement 
of at least two orders of magnitude with respect to the present experimental bounds. 

We conclude our analysis of SUSY contributions to FCNC processes in B physics with 
the B ° - D ° oscillations. We address the following two questions: can the exchange of 
SUSY particles in the box diagrams responsible for AM in the B~ -/Y~ system produce 
a significant enhancement over the value of A M ( B d )  predicted by S M  ? Is the ratio 
A M ( B d ) / A M ( B s )  in the RMSSM the same as in the SM ? A clear answer is provided by 
fig. 7. The inclusion of SUSY particles in the AM box diagrams yields a quite moderate 
enhancement of no more than 30% over the SM prediction. This result is merely a 
consequence of the suppression of the charged Higgs induced diagrams for tan +3 > 1. 
As for the second abovementioned question, the answer comes from a comparison of 
A M s t r s y / A M s M  for the B~ -/Y~ and B ° - /~o  cases. Their close resemblance indicates 
that also in the RMSSM the usual SM scaling of AM by (Kts/Ktd) 2 remains true. This 
result, which is obvious for the Higgs induced component, holds with large accuracy also 
for the chargino, gluino and neutralino contributions. This shows, as one naively expects, 
that the standard CKM elements Iftu and Kt~ play also a relevant role in the rotation of 
the squark mass matrices. 

It is important to recall that these results are obtained in the minimal framework, and 
therefore do not exclude in general the possibility of measurable aupersymmetric effects 
in other contexts. At any rate, they can provide a useful guidance for further analysis. 

An updated SUSY study of FCNC effects and CP violation in the Kaon sector is 
missing. The authors of ref. [30] study the impact of supersymmetry on rare B decays, 
mixings and related CP asymmetries. However, they do not perform a consistent numer- 
ical study of the renormalization of the relevant low-energy parameters. In particular, 
the splitting of the down-squark mass eigenstates is assumed to be simply of the form 
c mt 2, with c = 0.5. As we have seen in our present discussion, this amounts in most 
cases to overestimating the real effect. In addition, it does not account for the crucial 
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Figure 7: The ratio of the total RMSSM contribution to Ameq (q = d, s) over the 
corresponding SM prediction is shown for mt = 130 GeV and tan fl = 2, 8, as a function 
of the soft breaking mass m [21]. 

interplay between the renormalization of the up-squark and down-squark mass matrices, 
which turns out to preclude any relevant role of the gluino induced contributions. 

4. CONCLUSIONS 

In this lecture we have discussed some aspects related to FCNC transitions in the K 
and B meson systems in the standard electroweak scenario and beyond: We have tried to 
individuate criteria for a systematic understanding of the sensitivity of these low energy 
phenomena to a heavy top quark or exotic physics at the electroweak scale. We have 
focussed our analysis on the minimal supersymmetric extension of the standard model. 

The lesson we have learned is that,  while the combined study of rare K and B 
processes is quite effective in limiting extensions of the standard scenario, theoretical and 
experimental improvements are needed for a detailed search of heavy top effects. There 
is certainly no competition with the precision tests of the standard model performed at 
the high-energy colliders. 

The evaluation of the hadronic matrix elements and long-distance contributions to 
the various processes represent from the point of view of the theory the major source 
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of uncertainty. The analysis of the short-distance components and of the leading QCD 
corrections is instead, for mt < 200 GeV, well under control. In the B meson system~ 
short-distance contributions are known, for a given top mass, with a precision of 10%- 
20%. Therefore, if the top quark is found (at CDF?) then the study of rare B phenomena 
may provide very stringent tests on non-standard physics, and, what is perhaps more 
important, give us precise information (O(10%)) on the long-distance components of the 
transitions. Among else, this is a valuable input for the study of CP violation in the B 
system, which is the preferred way of performing a redundant test of the structure of the 
CKM matrix, and, ultimately, the motivation for building a B factory. 
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ABSTRACT 

I review the analysis of one-loop SUSY radiative corrections to the weak gauge 
boson masses, W and Z, and to the low energy p parameter in the context 
of a specific complete renormalization framework for electroweak interactions 
based on neutral currents processes. I also discuss the prospects for detect- 
ing SUSY radiative effects from the combined use of high energy and low 
energy data to be obtained in the next generation of high precision exper- 
iments. Details are provided of the electroweak renormalization framework 
used throughout. 

1. I n t r o d u c t i o n  
The present day "burning" activity going on at the various fronts of experimental endeav- 
our in Particle Physics, whether it be in electron-positron, proton-antiproton, neutrino- 
nucleon or in neutrino-electron scattering experiments , is pushing day by day the precision 
at which the Standard Model (SM) is being tested [1] to the very frontiers reached by the 
most sophisticated theoretical calculations [2]-[9]. These calculations are able to account 
for the l-loop (and in some respects 2-loop [10]) quantum effects on the amplitudes of the 
physical processes, e-~aluated in the field theory context of the SM with only one Higgs 
doublet. Several schemes have been devised to face the complexity of these calculations 
[2]-.[7], but apart from minor numerical differences among them, due to  unavoidable ef- 
fects from truncation in the loop expansion, the convergence of the various approaches is 
a most valuable piece of information to trust in practice the correcteness of the results as 
well as the healthiness of the whole theoretical construct underlying the SM. 

In view of these facts, one can hardly strengthen, for obvious, the conclusion that the 
"golden age" of the radiative corrections is born in electroweak physics. The "old" days of 
the first real production of the intermediate gauge bosons, with very rough determination 
of their masses, are now superseded by impressively good accurate measurements of the 
mass and width of the Z and fairly good, though still far not comparable, measurements 
of the corresponding W parameters. We are presently living the LEP I era, the era of Z 
physics, but the LEP II era, that of W physics, is not far away from us. 

Above all, the ultimate endeavour for a physicist is to assess to which extension theory 
matches experiment. Indeed we are now closer than ever to the very crucial confronta- 
tion of theory with experiment at the level of the fine renormaiization effects predicted 
by our favourite quantum field theories. On the theoretical side, calculations of the ra- 
diative shifts induced on the W and Z boson masses in the framework of the SM have 



188 

been performed by  several authors and in different schemes [2]-[9]. On the experimental 
side, recent measurements of the W and Z boson masses and precise determinations of 
sin28w and of the p-parameter patently show fairly good agreement between theory and 
experiment at the level of quantum corrections [1]. 

The successfulness of this program reinforces to the fullest the necessity of testing 
the predictions of the SM to the limit where hints of potential new physics may be 
disentangled, or at least be severely constrained, once the remainder of ignorance on the 
parameters of the SM (e.g., the top quark mass and the Higgs mass) will be pinned 
down. There are still important gaps to fill in our descriptive knowledge of the pure 
SM electroweak physics, such as the finding of the Higgs scalar and of the top quark [11], 
not to mention our complete ignorance on deep theoretically rooted questions, such as the 
whys and wherefores of having such a complicated structure for the strong and electroweak 
interactions, with so many uncorrelated parameters, flavours, mixings, families etc., whose 
precise values, or even their mere existence, looks fully divorced from the presence of the 
fceblest, though ubiquitous and uttermost important- cosmic featuring!- force in nature: 
gravity. 

Since the old days of supersymmetry (SUSY) [12], the idea of using the new Fermi- 
Bose paradigm to reconcile the gravitational force with the SU(3)c × SU(2)L × U(1)y 
interactions has been cherished by theoretical physicists [13]. In modern days one expects 
that the final unification may come from the realm of supersymmetric string theory, 
i.e. Superstring Theory [14], although it is by no means clear to everybody that such a 
theoretical creature will ever survive at all. Be as it may, the idea that supersymmetry 
could play a significant role in the important issue of building a consistent grand unified 
theory (GUT) of all interactions is worth exploring [15] and should not be abandoned, 
despite all previous unsuccessfull efforts to tag a genuine SUSY signal, and still less in a 
moment that highly precision data are being obtained to test the correcteness of the SM 
to its ultimate consequences [1]. Perhaps the most fashionable motivation that can be 
adduced at present to support SUSY is that the extrapolation of the LEP high precision 
data, with the inclusion of supersymmetric matter contributions in the renormalization 
group equations that govern the running of the three gauge coupling constants, displays 
an spectacular coupling constant unification at Mx ~- 1016 GeV ( Cf. ref. [16]), provided 
the sparticle masses lie in the range 100 GeV <_ MsusY <_ 10 TeV. Of course, this is not 
a proof that SUSY exists, but it is difficult not to be impressed by this result. It could 
be a virtual manifestation of SUSY through quantum effects from the Fermi scale to the 
GUT scale. 

In these lectures I would like to elaborate on the complementary issue of the radiative 
corrections on the basic electroweak parameters from SUSY, with special emphasis on the 
comparison between (neutrino) low energy and (LEP) high energy data. There exist in 
the literature various partial analyses of SUSY radiative corrections t o t h e  p parameter 
and to the weak gauge boson masses, Mw, g, and in different renormalization schemes 
[17]-[21]. Here I will develop a more detailed exposition of the analysis of the results pre- 
sented schematically in references [20] and [21]. The main point raised in these references 
was to show that for a large, phenomenologically relevant, region of SUSY parameter 
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space (involving sparticle masses of order 100 GeV) only a fully-fledged calculation (i.e. 
not just a two-point function estimate) can shed light on the answer to the final SUSY 
corrections predicted in a given renormalization framework. This is in contradistinction 
to the SM case, where the bulk of the radiative corrections just comes from the universal 
two-point functions, i.e. from the so-called indirect or "oblique" [22] fermionic contri- 
butions (quarks and leptons) to the self energies of the electroweak gauge bosons [3]-[5]. 
Whereas the "direct" (process-dependent) corrections ( namely: boxes, vertices and ex- 
ternal wave function renormalization) corrections are comparatively negligible in the SM, 
this is no longer the case in SUSY. All sources of SUSY quantum corrections may be 
equally important in the aforementioned parameter range and for a given scheme. 

The plan is the following. Section 2 develops the specific renormalization framework 
used throughout. Section 3 introduces the necessary SUSY formalism. Section 4 presents 
the analytical and numerical analysis of the SUSY radiative corrections. Finally, Section 
5 is devoted to the conclusions and some speculations on 2-loop SUSY quantum effects 
on the basic electroweak parameters. An appendix at the very end provides some useful 
formulas. 

2. R e n o r m a l i z a t i o n  F r a m e w o r k  
Our renormalization framework is based on the on-shell scheme developed in ref. [2], which 
was extensively used for l-loop SM calculations in refs. [3] and [5], and in 2-loop calcu- 
lations in ref.[10]. The following three processes are used to define the basic eleetroweak 
parameters: u~,e and fire elastic scattering is used to define the electroweak mixing angle 
s~ --- sin 2 0w; muon decay to define the Fermi constant, GF, and finally Coulomb scatter- 
ing to define the fine structure constant a(k 2 = 0). In many applications, it is convenient 
to take the on-shell renoiTnalization framework of ref.[4], where Mz is taken as an input 
datum. In view of the present high precision measurements of this quantity, it proves 
to be an extremely convenient choice [7]-[8]. But certainly not so interesting if one is 
addressing the issue of the radiative corrections to Mz itself!. 

Clearly, the source of largest error in our set-up comes from the first parameter men- 
tioned. We shall comment later on about the uncertainty induced in our calculations 
from the inherent error in the parameter s~, which is inputed from low energy neutrino- 
electron scattering, and specially on the prospects to improve that .error in the future (also 
in deep inelastic scattering). But for the moment we take the point of view that such 
a scheme can be useful to illustrate the kind of effects to be expected in the context of 
a fully-fledged analysis involving the complete structure of the l-loop SUSY corrections. 
Needless to say, the calculations in this framework are purely electroweak (no uncertainty 
from strong interactions), and although they are anyway quite cumbersome, they are at 
least clean and straightforward. From the results obtained one can assesswhether facing 
a similar, but still more complex analysis, namely an analysis in which u~,e-scattering is 
replaced by deep uN-scattering (with a corresponding error on s~ likely to be improved 
substantially in the future), could be useful or not to unravel potential SUSY quantum 
effects. 
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Specifically, in our framework s~ is fixed through the ratio 

R - a(v~,e --* v~e) = ~2 _ ~ + 1 ' (1) 

where the parameter ~ is given by 

= - a / b ,  (2) 

with a and b the vector and axial coefficients in the neutral current interaction 

£.z = ~cot-7~'(a - b~5)l Z~,. (3) 

Here co = cos 0, and the values of a and b for the leptons are 

a =  - 1  +4s~,  b =  - 1  f o r / =  e,#,  etc, (4) 

and 
a = b = l  for l = v e ,  v~, etc,. 

Therefore, the value of s~ obtained from the measured parameter { is given by 

and 
2 m~E~ 1 ff(1)ue ----+ l]l,e- ) = GF--~--~[(a -- 5) 2 q- ~(a  -k b) 2] , (8) 

where E~ (E~) is the incident neutrino (antineutrino) energy in the laboratory. In these 
formulas, a and b are those corresponding to the charged leptons (eq.(4)). 

At the tree level, the bare values of the parameters are finite and given by a (°) = a 
and b (°) = b. Therefore, in lowest order of perturbation theory 

a(0) 

~ =  b(0), (9) 

and so at this order the physical relation (6) remains true 

4( 1 + = s(0)2. (10) 

But at higher orders the coefficients a and b in equations (3)-(8) are shifted from the bare 
values by the radiative corrections. For example, let the l-loop bare values be a O) and 
b (1). The coefficients a and b are now given by 

a : a (°) = a (1) q- 6a , b = b (°) = b (1) q- 6b (11) 

1 
~(I +~) = s~. (6) 

This is our (to all orders) definition of the (physical) electroweak mixing angle. 
The expressions for the cross sections used to compute the ratio R are: 

2 meEv I a(v~,e- ---+ v ,e - )  = G F ~ [ ( a  + b) 2 + -~(a - b) 2] (7) 
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and the l-loop bare value of s~ by 

s~l) 2 = 1 ( 1  _ 
a (1) 

while the parameter ~ reads 

(12) 

8(1)2 = 1(1 a (°) - 5a s~0)2 + a (°) . 5a 5b 
= (14) 

where 

This equation shows that, in contradistinction to the tree level result (10), the radiative 
corrections modify the relation between ~ and the bare vector and axial coefficients; it is 
no longer of the form (6). In fact, at l-loop that relation gets shifted in the following way: 

1( 1 + ¢) = 8~1)2( 1 - -  (~3), 

a(°) (Sa 
5 a -  4s(O)2b(0) a(0) b-~) (16) 

as it follows from eqs.(10), (14) and (15) [23]. 
Clearly, 5a acts as a counterterm in the definition of the electroweak mixing angle. Its 

value follows after computing all possible (l-loop) radiative corrections to u~e-scattering. 
Thus it is in general an ultraviolet (UV) divergent quantity, as it also is the bare value 
s~ 1)2. The UV-divergences must cancel on the RHS of eq.(15) in order that  the LHS is 
finite. In this way 5a takes care that  eq.(6) be a consistent definition of the physical 
mixing angle. 

Concerning the definition of the Fermi constant, one has 

GFrnt,2 5 ~ 2  
8 " ~  ) , (17) F(#-  --* e v ,~ )  = 1927r3 (1 - m ,  

where it is understood that we have already subtracted from the experimental value, Fe~, 
the pure (i.e. the so-called "conventional") electromagnetic radiative corrections, which 
are well known to be finite: 

2 5 
F ( # -  ---* e - u ~ e )  ~ F e ~  G F m  ~ a 25 

192~r 3 2~r (-4- - 7r2) " (18) 

At the tree level, the relation between GF and the parameters of the charged-current 
Lagrangian 

g [/?~(1 - "/5) u, W ~  + h.c.] (19) 

(15) 

a (1) -{- 5a 

- b(1) + 5b " (13) 

Eq.(12) is the model Lagrangian definition of the bare mixing angle and remains formally 
true order by order in perturbation theory. 

From eqs.(10-12) it is easy to see that 
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reads as follows: 
GF g(0)2 
v/~ -- 8M(~)2 • (20) 

We call £(o) = "~w0et°(°)2,~"(°),,,,waR(°)~J the bare Lagrangian at the tree-level, i.e. the classical 
Lagrangian £ expressed in terms of the bare parameters in lowest order of perturbation 
theory (or tree-level parameters). These are finite, but not physical. 

As in eq.(15), the previous tree-level relation gets shifted when writ ten in terms of the 
l-loop bare parameters gO) and M~): 

CF g(1)5 (1 
---- 8M(~)2,* + 61). (21) 

Here (51 is the corresponding counterterm taking care that  GF is consistently defined 
through the relation (17). Its value is to be obtained by explicitly computing all possible 
radiative corrections to #-decay. 

Finally, the fine structure constant, c~ = c~(k 2 = 0), is defined as the residue of the 
one-photon exchange pole at zero momentum transfer in a Coulomb scattering process, 
say #e --* pc. At lowest order, we obviously have 

g(O)28(o)2 
- 4 ~ '  (22) 

whilst at the l-loop level 

+ (52) (23) 
~= 4----~-- 

where (52 is the counterterm associated to our definition of the fine structure constant. It 

follows upon computing all possible (1-1oop) radiative corrections to Coulomb scattering. 
By inverting the simultaneous set of fundamental relations (15), (21) and (23), we 

obtain the bare 1-1oop values of the Lagrangian fundamental parameters in terms of the 

various counterterms and the physical parameters: 

= 1(1 + {)(1 + 63) = s~°)2(1 + (53), (24) 8(81)2 

16~ra. 
gO)2 = 1 + ~ ( 1  - (52 - 6a) = g(°)2(1 - 65 - 63) , (25) 

~lAr(1)2 4~r~ ~) (1 -'~ 61 62 -- 63) ~A'(0)2(1 . . . . . .  w ~* + 61 - 62 - 63) • (26) 
""w V~CF(1 + 

On the second RHS's of these equations, I have replaced just for notational convenience the 
physical parameters by the Lagrangian tree-level parameters. The latters are, of course, 
of no physical significance, since their values depend on the particular renormalization 
framework that  one adheres to. However, I repeat, I am using them here just as a 
bookkeeping device. 

The bare l-loop Lagrangian, i.e. the classical Lagrangian E expressed in terms of the 
bare l-loop parameters (24)-(26), will be called E(1) = £(s(81)2,g(1),M(~)). To get the 
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l-loop finite value of the W mas from the l-loop bare value M(~ ), we just add the free 
propagator obtained from £(0 plus a l-loop correction (self-energy insertion) to it, and re- 
quire the ensuing expression (call it the unrenormalized l-loop propagator) to have a pole 
at the physical mass. This is nothing else than the on-shell renormalization prescription, 
well known from QED. If we call Hw(k 2) the vacuum polarization function associated to 
the W-boson self-energy insertion, the l-loop propagator reads 

-ig.. (27) 
k 2 _  2 + nw(k )] 

I have disregarded the contribution from the k~k. terms in the W propagator. In 
practice they would afford negligible contributions in our framework, since they would 
be proportional to the external fermion masses squared. However, for our processes 

2 2 m~/M~¢ < <  1 ; l = e, #, v. 
The physical (up to l-loop) value of the W mass therefore is 

~R0)2 _- 
M~ . . . .  w + nw(  k~ M~) = M~)~(1 + ~1 - ~2 - ~3)k2--0 + Hw(M~) , (28) 

where in the second equality I used eq.(26). The label k 2 = 0 means that the various 
contributions to the & (i = 1,2, 3) are to be evaluated at low energies (k 2 < <  M~) (more 
precisely, at low momentum transfers), in accordance to the processes I have chosen. 

Although the contributions to the & ~s and Hw(M~) are individually UV-divergent, 
eq. (28) must be finite in a renormalizable theory, e.g. in the SM or in any (softly broken) 
global SUSY version of it. 

As for the bare Z-mass parameter, our model Lagrangian definition of it is Mz = 
Mw/co. This relation must be preserved by the bare parameters order by order in per- 
turbation theory, in particular 

M (° )=  M(w°)/c~ °) and M(1)= M(~)/c(o 1) . (29) 

Imposing on-shell renormalization as before, it is easy to see that the physical (up to 
l-loop) value of the Z mass is 

82~ 
M2---- -M(°)2(1-}-e l -e2-~3+~,a,  +Hz(M~)  , (30) 

k2=0 

where the last term is the on-shell value of the vacuum polarization function associated 
to the Z self-energy insertion. Eq.(30) must be finite in a renormalizable theory. Notice 
that relation (29) does not hold for Co- as obtained from (6)- and the physical masses Mw 
and Mz- given by (28) and (30) -in contrast to the scheme of ref.[4], where co is defined 
that way. Of course, that co could be computed in our scheme by simply performing the 
quotient between the physical weak boson masses inferred from (28) and (30). 

Let us specialize formulas (28) and (30) to include only the l- loop self-energy (SE) 
contributions to the ~ ~s (see Fig. 3, Secc. 4) from our basic three independent processes. 
We can easily check that 

~fE__ Hw(k2) ~2 s E -  1-i7(k2) (31) 
M 2 , -- k2 
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As for the radiative shifts to the vector and axial coefficients, we have 

6a sE = -4soco II~z (k 2) 6bSE 
k2 , = 0 ,  

so that from eq.(16) 

63SE = C0 n ~ z ( k  2) 
so k 2 

Formulas (28) and (30) therefore boil down to 

and 

_ co M 2 n , z ( k  2) 2 n~(k2) (6M2)SE= (-Hw(k2) ~o w -~ M ~ ' ~ ) k 2 = o  + nw(M~) 

(32) 

(33) 

(34) 

nw(k ~) ~ - ~  n,~(k ~) M~I~(k~), 
(6M2)SE = ( ~ + o M2 k 2 Z~'k2-O_ + nz(M~), (35) 

where II~ is the vacuum polarization function of the photon (from Coulomb scattering) 
and IL~z is the mixed self-energy function (both from Coulomb and from u,e scattering). 

In general, the full contribution to formulas (34)-(35) from a renormalizable theory 
is not finite. For example, in the SM is not finite. However, if the various vacuum 
polarization functions include only the contributions from fermions, then, it is finite and 
as a matter of fact it yields the bulk of the radiative corrections to the weak gauge boson 
masses in the pure SM context [3]-[5]. 

Let us now turn our attention to the p-parameter and its renormalization by higher 
order quantum effects. The low energy p-parameter is defined as the ratio between the 
weak neutral and charged-current Fermi constants at zero momentum transfer [24]. To 
be more precise, let J~c and ffvv be the standard charged and neutral weak currents. 
The low energy effective Lagrangian accounting for our weak processes may be written 

-- ~22 (J~c(#)Jtcc~(e) + pJ~vc(e)JNc~(v) + h.c.) . (36) E~fl 

Specifically, J~c(# or e) is the charged weak current for the muon or electron vertices in 
#-decay, and J~vc(e or v) is the neutral weak current for the electron or neutrino vertices 
in v~,e-scattering. 

Within the context of the SM, p can be easily identified. At the tree-level, i.e. using 
/:(0) to compute the currents, it simply reads 

aAr(0)2 
p(O) _-- "~*w 

~(0)2A0)2 -- 1 , (37) 

where the second equality presumes a weak isodoublet structure in the Higgs sector of 
the SM or of the SUSY SM, in accordance with eq.(29). Therefore, any departure of the 
experimentally measured p-parameter from 1 has to be attributed, within this context, to 
higher order quantum effects induced by SM, and potential non-SM, radiative corrections. 
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To see that p is no longer 1 at higher orders, let us identify it from eq.(36) at l-loop 
order by using £(1) to compute the currents. Of course, the first term of eq.(36)-the 
charged current interaction- remains unmodified, for that term is used to define GF 
through the counterterm 61 (see eq.(21)). It is the second term of (36), the one defining 
the neutral-current Fermi constant ~F ----  pGF, that gets renormalized with respect to the 
first. One source of renormalization just comes from the aforementioned condition that the 
charged-current Fermi constant remains untouched by radiative corrections. Therefore, 
from eq.(21) we set GF ~ GF(1 --51) only on the second term of (36). On the other hand, 
the coefficient p in eq.(36) will undergo on its own an over-all rescaling p --, p(1 + 54), 
where 54 is the shift induced on that parameter by those radiative corrections to ut, e- 
scattering for which 53 = 0 identically. These are the subclass of radiative corrections to 
uue-scattering that verify 5a/a - 5b/b = 0 (see eq.(16)). The net effect on the structure 
of the Lagrangian (36), therefore, is 

-~2 (J~v(#)Jtcv~,(e) + (1 5,)p(°)(1 + 54)j(1)U(e)J1vc~,(u) + b.c.). (38) 
~(1) 

e l  f = 

Here 1(1)/~/'~h "NO ~-J -- J~vc(a(1) -1- 5a, b (1) -1- 5b) is the weak neutral current associated to the 
electron. It absorbs the subclass of renormalization effects on uue-scattering that go into 
the definition of s~. The other type of renormalization effects, those that go into J(~)cu(u) - 
(1 + 54)J~o(U) have been factored out explicitly and are responsible for p --* p(1 + 54). 

Hence the total renormalization of the p parameter is 

p(1) : (1 - 51)(1 + 54)p (0) ~ 1 + 5p, (39) 

where the full l-loop shift is 

5p = -51 + 54. (40) 

If we only consider the universal effects from the self-energies (i.e. the total "oblique" 
contribution), then 51 is given in eq.(31) while 54 gets a similar contribution from u~e- 
scattering. Thereupon eq.(40) boils down to [25] 

5; sE = (nw(k ) Hz(k 2) 
-~w M~ ) ' (41) 

k2=0 

which must be finite for k s = 0. In general, however, the complete formula (eq.(40)) 
will involve a lot more of calculations than the simple eq.(41); namely, it will require the 
computation of both the indirect ("oblique") as well a s t h e  direct (process-dependent) 
effects. In SUSY all of them turn out to be of comparable size, at least in our framework 
(Cf. Secc. 4). 

To finish this section, let me remind the reader that deviations from eq.(37), induced 
by nonvanishing 5p within the context of the SM with a Higgs doublet sector, can be 
viewed as an intrinsec breaking of an accidental global isospin symmetry, the so-called 
"custodial" SU(2)v symmetry [25]-[26]. It would be a remnant tree-level symmetry of the 
spontaneously broken gauge theory, in the absence of weak hypercharge interactions and 
of unequal Yukawa couplings for the T3 = 1/2 and T~ = - 1 / 2  weak-isospin components 
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in each fermion isodoublet. In lowest order of perturbation theory, the SU(2)v-breaking 
terms do not affect p at all (Sp (°) = 0), but at higher orders they induce 5p ~ 0 contribu- 
tions. In general, beyond the tree level (i.e. for n _> 1) all the parameters of the effective 
n-loop Lagrangian become sensitive to the breaking of SU(2)v. An example is afforded 
by eqs. (34) and (35). Notice that, for s~ ~ 0, the difference in sensitivity of Mw and 
Mz to hypercharge interactions vanishes (the expressions inside the parentheses on the 
RHS's of these equations become identical) and only the mass splittings within isodou- 
blets (caused by the unequal Yukawas) remain: (Hw - Hz)[s]-~0 ~ 0. At the l-loop level 
(n = 1), however, non-vanishing contributions to 5p arise only from mass splittings within 
isodoublets but not from hypercharge interactions. This situation changes substantially in 
the SUSY SM, where t.he presence of certain soft SUSY breaking terms (like sfermion and 
gaugino masses, and trilinear couplings in the superpotential) and of asymmetric vacuum 
expectation values in the multidoublet Higgs sector, may introduce additional sources of 
breakdown of custodial symmetry, both explicitly and spontaneously (Cf. Sections 3-4) 

[271. 

3. S U S Y  F o r m a l i s m  
The renormalization framework developed in the previous section is completely general 
and can be used in a pure SM context or in any renormalizable extension of it. As stated 
in the introduction, I want to concentrate on the kind of potential new quantum effects 
afforded by supersymmetric extensions of the SM. Let me not to insist on the theoretical 
motivations for supersymmetry (SUSY), see ref. [15]-[16], and go directly to a quick 
review of the necessary formalism for our calculations [18]. 

We shall perform our calculations in a mass-eigenstate basis. One goes from the weak- 
eigenstate basis to the mass-eigenstate basis via appropriate unitary transformations. Two 
classes of SUSY particles enter our calculations: the fermionic partners of gauge bosons 
and Higgs bosons (called gauginos and higgsinos, respectively) and on the other hand 
the scalar partners of quarks and leptons (called squarks and sleptons, respectively, or 
sfermions generically). In the minimal SUSY extension of the SM, hereafter called MSSM, 
we need two Higgs doublets with weak hypercharges Y1,2 = =FI: 

This is due to the fact that the Yukawa couplings responsible for the masses of the up- and 
down-like quarks are generated from thesuperpotential, a SUSY structure that cannot 
support LH and RH fields at the same time. The Higgs doublet ~1 (I'2) gives mass to 
the down (up) -like quarks. The corresponding higgsino doublets are denoted by ~1 and 
~2. Their components are Weyl spinors. Prom the higgsinos and the various ganginos we 
form the following three sets of two-component Weyl spinors: 

= r ;  = 

r o = -0 -o  g~, H, } .  (3) 
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These states get mixed up when the neutral Higgs fields acquire nonvanishing v.e.v's, 
< H~I > =  vl and < ~ > =  v2, giving mass to the gauge bosons: M~  = (1/2)(v~ + 
v]) ,Mz = Mw/ca. (In general vl ~ v2, so that we note, in passing, that custodial 
symmetry becomes spontaneously broken). Arranging the fields (2)-(3) in column vectors 
IF ± > and ]F ° >, the undiagonal mass Lagrangian for the gaugino-higgsino (GH) sector 
reads 

1 
LM = --(< F+IMI r -  > +h.c.) - ~ < r° lM°l  r°  > ,  (4) 

where the charged and neutral GH mass matrices, after SU(2)L x U(1)v breaking, are 
the following: 

M MwV~sa  ) (5) 
]vl = Mw V~ ca # 

and 
[ 

= [ - M z  c a so 
M o 

\ Mz s~ so 

with the following notation: 

M ~ 0 - M z c  a so Mzsaso 
0 M Mzcac  o - M z s a c o  

Mz ca co 0 - #  
- M z  sa co - #  0 

(6) 

s a-=sinf l  , c a---cosfl , tanfl=v-22. (7) 
Vl 

The mass parameters M and M' come from SU(2)L × U(1)r-invariant gangino mass 
terms that "softly" break global SUSY (i.e. that do not induce quadratical divergences 

[15]) while # comes from the SUSY mass term #/~1t/)2 built out of the two chiral Higgs 
superfields /7/1,2. The origin of the softly SUSY breaking gaugino mass terms can be 
traced back to a remnant of the fiat space-time limit in local SUSY, i.e. of Supergravity 
(SUGRA) [13], which on the other hand is thought to be the point limit of Superstrings 
[14]. We shall assume that the MSSM can be embedded in a GUT, in which case the 
parameters M t and M are related as follows [15]: 

M I = _5 tan2 0w "~_ 0.5 . (8) 
M 3 

The 2 x 2 mass matrix A4 is in general non-symmetrical and its diagonalization is accom- 
plished by two unitary matrices U and V, while the symmetrical 4 x 4 mass matrix Ad o 
can be diagonalized by a single unitary matrix N. The entries of the matrices U,V and 
N are complex in general in order to obtain positive-definite mass eigenvalues: 

U*.hdV t = d iag{ i l ,  U2} and N*A4°N t = d i a g ( i  °, ...U°a} . (9) 

We are now ready to construct the charged mass-eigenstate 4-spinors (charginos) associ- 
ated to the mass eigenvalues M~ (i = 1,2). Call them g2 +, and let ko~- be the corresponding 
charge conjugate states. We have 

v, i r ;  = U~F~- " (10) 
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As for the neutral mass-eigenstate 4-spinors (neutralinos) associated to the mass eigen- 
values M ° (a = 1,..., 4), they are the following Majorana spinors 

= = Cq~ (11) 

The gauge interactions with charginos and neutralinos (referred to generically as "inos") 
in the mass-eigenstate basis are the following: 

£°wH = J~Z~, + J~,,~A~, + (J~W~ + h.c.) , (12) 

where 

= , ~ "7 (Ui~PL + Uij Pn)#j 
",~ 

l x - - - 0  ~, L n 0 +-~ ~ ~,~'7 (O,~PL + O~,~Pn)~} 

g3,,, = gso E ~,+'7"'~ 

(13) 

(14) 

(15) 
i 

J~ = g E E (~%'(c2,PL + c2PR)V, + , 

with PL,n = (1/2)(1 + '75)- Notice that the neutral weak current is not diagonal, as could 
be expected from the fact that the mixed weak-eigenstate gauginos and higgsinos belong 
to different weak-isospin representations. The various coupling matrices are the following: 

1 , 
u~ = u, lu;l + -~u,~u~2 - s~, j  

1 *V, v,~ = v~*~vj, + ~v,2 j~ - ~6,~ 

1 , 
o,~L~ = --0,~ = No,3N;a + 5No, aN;a 

1 , __ Na2U,1 c~  = --N~U~2 v~ 

C: ~, - -1N~*,V,~- N : # , I .  (1~) 
x/2 

I turn now to the scalar sector and their interactions. The mass matrices for sfermions 
mix left-and right-handed type fields, i.e. those SUSY scalar fields associated respectively 
to the two chiral components of each SM fermion field. Consequently, they are not- 
in general-mass eigenstates. For each sfermion flavour, f ,we have an angle, ~ol, which 
defines the rotation that diagonalizes the scalar mass matrix. I shall not dwell into the 
actual structure of these matrices in special cases but rather work with general unspecified 
matrix elements. Let us illustrate the case of sleptons ([ = g,/5, ...). Squarks (~ = fi, d, ...) 
are to be treated analogously, of course, but I will spare the reader the ordeal of reading 
up all the details. As before, we shall work in the mass-eigenstate basis (the physical 
basis). Thus we introduce a rotation matrix for each slepton flavour 

- s l  c~ ; s~--sin~o~ , Cl=COSCpl, (17) 



199 

relating the weak-eigenstate basis l~ = {l-L, l-R} to the mass-eigenstate basis l~ = {l-1,1-2 } 

through 
~,. = ~E ';'{')~ (18) " "ab  "b " 

b 

Let us call ~ , ( 8  and ~ ( 8  the mass eigenvalues associated to the two ~ l a r  fields (18). 
Denoting by 5t the sneutrino associated to [L, they together form an SU(2)L doublet while 
[R forms an SU(2)L singlet: 

i.e. they follow the same pattern as the corresponding charged lepton l = IL + In and 
neutrino ul. Of course, in the ease of squarks one needs a rotation matrix for both the 
up and down components in each squark doublet, and they are in general different, but 
as I mentioned before I will omit details. As for the the sneutrino masses mr,~, there 
obviously are no non-trivial mass matrices in the MSSM. The interaction Lagrangian of 
a slepton generation with the gauge bosons reads, in the physical basis (1 am suppressing 
flavour-lower and upper-indices here): 

- ig 
/2 /  - -  ~ E{R~I~*~ ~ '  [~W + +h.c.}-igso~-2[*. ~ [~A. 

• 4 - *  

+~{,z ~ ~ + E sob[: 0r [b}z. 
a,b 

1 2 * 7. ~ "Jr~g {~ab RaiRbllbla Ar I]*~}W2W-la Ar g280 ~a [:[aAlaA# 

g2 _ _ g 2s° ~ S.b[*[bA~,Z" (20) +~0{ ~*~ + E & d i h } z . z "  - ~ - ~  
a b  

where the following notation has been introduced: 

S~b = ~ A~P~R~ and &b = ~ )~2R.~R~ , (21) 
C C 

with (see eq.(1.4)) 
a+b a - b  

~ 1  = -  , ~ 2 = - -  (22) 
2 2 

Finally, both sectors-fermionic and scalar- are subject to mutual interaction through 
Yukawa couplings of the form chargino-fermion-sfermion or neutralino- fermion-sfermion. 
In building up the physical Yukawa couplings from the weak-eigenstate Yukawa coupligs, 
we may ignore the higgsino components, coupled to leptons and sleptons, since their 
strength is negligible for the electrons and muons involved in the external legs of our 
low-energy processes. In general, the only relevant Yukawa coupling of this type is the 
"higgsino-top-stop" component, but it never enters our framework at l-loop (see, how- 
ever, an intriguing remark on this particular in Secc.5). Therefore, the relevant pieces are 
the following: 

Ly = - ig  ~ U*l~,*~:~ PLl- - i g o r - 2  R~, Vi*I[*~+ PLu 
i i a 
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where 

i g  * * ~* - 0  
+ T  ~ _ , ( 8 o N ~ l  - c o N ~ 2 ) v  ~ a P L  y 

V ~CO c~ 

ig ~, -o 
(23) 

A ~  = R a l ( 8 0 g *  1 + coN*2) - 280Ra2Nctl 

A a a  : R a l ( s o g *  1 --~ coN*2) -4- 2 8 0 R a 2 N c t l  • (24) 

To summarize, the SUSY interaction Lagrangian needed to perform our calculations is 
obtained from eqs.(12), (20) and (23): 

-- + + + c y ,  (25) 

where the third piece is the squark analogue of the second one. The corresponding Feyn- 
man rules are trivially read off this Lagrangian, with perhaps only two exceptions worth 
mentioning. They refer to two aspects of the neutralino interactions with the Z boson 
connected with the Majorana nature of these fields; namely, on one hand the Feynman 
rule associated to the Z~°qJ~-vertex gets an "unexpected" additional factor of 2 that 
cancels the 1/2 standing out in the corresponding Lagrangian term (see eq.(13)), and on 
the other hand the neutralino contribution to the vacuum polarization of the Z-boson 
demands an over-all exchange symmetry factor of 1/2. 

4. Analys is  of  the  S U S Y  Radiat ive  Correct ions 
Using the formalism and Lagrangian interaction terms presented in Seccs.2-3, we are now 
ready to compute all possible l-loop SUSY radiative corrections to our basic three low- 
energy processes: v,e-scattering, #-decay and Coulomb scattering. By isolating the full 
l-loop structure of the three counterterms 6i (i = 1,2, 3), and of the radiative shift ~f4, 
we will infer (from eqs.(2.28), (2.30) and (2.40)) the radiative corrections to the basic 
electroweak parameters themselves: M w ,  M z  and p. In this section I will provide some 
details of the analytical formulae resulting from the l-loop calculations. However, since the 
complete analytical results [18] are rather long and repetitive, I wil! concentrate myself on 
just the analytical computation of SUSY radiative corrections to the first process, namely 
uue-scattering. Nonetheless the numerical analysis that I present at the end of this section 
contains, of course, complete information from the three processes. 

As explained in Secc. 2, there are two general classes of radiative corrections to ut, e- 

scattering: 1) those that contribute to ~ia and are used to define s~ through eq.(2.15), and 
2) those that are absorbed into 54 -identically giving 53 = 0-and so contribute (in part) 
to the renormalization of the p parameter. Let us start with the first class of radiative 
corrections. The 10 diagrams of Fig. 1 correspond to SUSY vertex corrections and wave 
function renormalization of the external fermions. Summing the contribution from the 
first 4 diagrams (a.1)-(a.4), a straightforward calculation shows that the UV divergences 
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cancel and no logarithm of dimensionful quantities is left: 
2 

53(a.1 + a.2 + a.3 + a.4) ---- ~2{E[U,,U~U;lJ~o(M,, Uj,m(~e) 
IDTl" • • ~J 

M~2M~Mj R • M. - _M2U~IU~,U~IF( ~, Mj, m(~)] + ~[1 - ~ [U,112~o(M~, m(~) ,  m(~o)]} ,(1) 

where the finite (i.e. UV-convergent) functions F and/~0 are related to standard renor- 
malized 3-point functions (Cf. Appendix). The next two diagrams (b.1)-(b.2) in Fig. 1 
are of the neutrino-charge-radius type. By expanding their amplitudes in powers of the 
photon momentum, one easily verifies that they render no net contribution to the neutrino 
charge and that the first non-vanishing contribution is indeed of the charge-radius type. 
Another straightforward calculation yieds 

g2 

where 
7 5 2 8 3 2 f ,(x) = -~-~ + 2 x -  ~x + ~x +x2(1 - ~x)logx , 

1 1 2 l l a  1 3  
f2(x)----- 9 ~-~x , ~ x + x  - + ~ x  logx 

x , i -  M~ , x ~ , - x ~  1 • (3) 

The contribution from diagrams (c.1)-(c.3) is also (globally) finite but it turns out to be 
rather involved: 

_g2 ] - t  N, '2 A R (°) 2 .  6 a ( c . 1 + c . 2 + c . 3 ) =  1 6 ~ r 2 ~ [ ~ [ g , 2 - r  0 c~l[ I. 1] a l ]  [ l O g  

+~o(MO,m.(~),m,~(~))] ~ .  (~)*(~)^ - - o -- SZbR,, Rb, Eo(m,(e), rob(e, M~)} 
b 

92 
+ JEo(M°,m,(~),ma(~))] 

, ( e )  *(e) ^ 
- ~ S:bR~2 Rb2 Eo(m,(e), mb(5), M°)}.  (4) 

b 

Here to ---- sa/co and the various coupling matrices and remaining notation have been de- 
fined in Secc. 3. Notice that the last diagram of Fig. 1 (diagram (c.4)) has no counterpart 
in the SM case, for there is no triple Z-boson vertex in the SM. Here the non-diagonal 
coupling of the Z to the Majorana neutralinos furnishes the following finite contribution: 

g2 
53(c.4) = 16~r----- ~ ~ ~_.(IR(] ) [2(N~2 + tog~,)(N:2 + toN, l)* 

a a ~  

a 1 ^ o o - L o o o a + , b '  (e )  2 • x[Oa~Eo(M~, M~,m,(e)) - O~M~M~Co(M~, M~,m,(~))] -{- ---~--0 [R~2 N~,N~I 

x 0 L 1 ^ o o - a M o o o o - 0 ~  ~M~Co( M~,, M~, m,(e))]} (5) [ a~Eo(M~, M~, m,,(e)) - 

where the renormalized 3-point function Co is defined in the Appendix. 
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Figure 1: SUSY corrections to vertices and external lepton lines in v~e-scattering. 



Figure 2: SUSY box diagrams in u,e-scattering. 
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Figure 3: SUSY vacuum polarization diagrams associated to the Z boson. There are 
similar diagrams for the W boson and for the ~/and mixed 3, - Z self-energies. 
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Turning now to Fig. 2, we see that we have contribution from several box diagrams. 
They require some Fierz reordering before proper identification of the radiative shifts on 
the vector and axial coefficients. The total output from this sector is a rather cumbersome 
expression: 

g2 x-" ,R0,),2~U. ~ wV*,~ ~ 2M~ M~M~ 
63(f ig.2)= - 16~r----- 5 ,J~/_. . , . ,  . t ,,%iL,~, /'*"71~ MT--~f"2 { '~'2":~--~(, 5 ) ' ' i ' ' ' a  

a i - -  " ~ j  

xF(M,,m~(fz),m(ge)) M~_~ F(Mj,m~(~),m(g~))} 
g2 

M) - m~([z) 16~ "2 

x ~'~ ~'T' 4~'M°2--M°~ tol ~,,[ )( /~,N/~2 - to[No1[ 2) 
~- ,~ ,  M~v .a + b (.)2 , 

t - z - -  R;~ I ( N~, N~ - N, ~ N* 

M o2 0 ~ 

x[  02----5 ~ F(M~,m~(e) ,m(~))  
M2 - mo(~) 

+ R(~) 2t ~.~ 2 ,2 2 2 
~1 v ' ~ 2  - t ~ N ~ , ) ( g j 2  - t o g ~ , )  

O MO ~o 

M 02 

M] 2--~m2(~) F( M~, ma(~), m(5~))] 

2M°M~ o 
M~ - ~-~ (e)F (M~, m. (e), m(~A)] 

+ ~ b  ln(~>Rg*ig* ~ *~ -- toN~I)(N~IN~2 - toNal ) 

2M°U~ o - 2M°M~ . ~ ×[MO~---~.(e)f(M~,m.(e),m(O.)) M~Z~(e)f(M$,m.(~),m(9~))] 
+ R(~) 21N. 2_ o1 t ~ t~IN~II~)(IN~2? t~IN~,?) 
× ~ 2  o - Mg2 

[ o2--=2tz~F(M~,ma(e),m(5~)) F(M~,ma(~),m(5~))]}. (6) M o _ ,,,ate} Mg 2 : m2(~) 

Finally, we have to compute the SUSY l-loop vacuum polarization functions associated 
to the Z and W bosons. We need their expressions for k 2 = 0 and k 2 = M~, W (Cf. 
eqs.(2.34), (2.35) and (2.41)). We also need the mixed ' 7 -  Z self-energy function involved 
in the v,e-scattering process at k 2 -- 0. For completeness I shall provide general formulas 
for arbitrary k 2 and shall also quote the SUSYphoton self-energy function from Coulomb 
scattering. All of them receive contributions from "inos" and sfermions. Fig. 3 illustrates 
the case of the Z vacuum polarization function. Similar diagrams hold for the other cases. 

The analytical results from the "ino" sector read as follow (see Appendix for the 
various 1-and 2-point functions used below) 

g2 
iHz(k2)(inos) = -~o {2 ~[Xij{2k2[B21(k2, Mi, Mi) - Bl(k 2, Mi, Mj)] 

+( M 2 - M2)BI (k 2, M,, Mj)} + M,( M,X,j - MjY~j)Bo(k 2, M~, Mj)] 

+ ~-][X°~{2k2[B2,(k2, M ° , M ~ ) -  BI(k2, M°,M~)] 
a~ 

+( M~ ~ - M°')B, (k', M°, Mb  } + M° ( M° X°~ - M$Y°~)Bo(k', M2, M~)]} , 
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iIIw(k~)(inos) = 2g s ~ ~--:~{ Po~{2kU[B~l(k s, M °, Mi) - B~ (k2, M~,° Mi)] + (M~ - M ~ )  

o o - M  B s o XBl(k  s, M °, M0} + M~(M2Pod ,Q~,) o(k , M~, MOt , 

iII~z(ks)(inos) = 4g2kSs~ ~ [ B s , ( k  s, Mi, Mi) - B~(k s, Mi, Mi)] , 
i 

iiLr(k2)(inos) s s 2 = g k So ~ (U L + Un)~[2Bs,(k s, Mi, Mi) - Bo(k s, Mi, Mi)] , 
i 

with 

(7) 

Z2fl L L R R 0 L R L R 0,~¢~0~,~ + 0 , ~ 0 ~ ,  Y2~ + = , = O,~Ot~,~ 0~,0,~¢~, 

whereas sleptons yield 

g2 
iIIz (k 2 ) (sleptons) = ~ {k 2 [(2s~ - c~) s [B0 (k s , ml ,  ml )  - 4Bsl (k s, ml ,  ml)] 

+(2~  - 4)SBo(k s, . ~ ,  ms) - 4B~, (k s, ms, ms)] + 4 4 4  [B, (k s, m,, m~) 
- 2 B s l  (k s, ml ,  rrts)] + S0(k s, m~, my) - 4Bsl (k s, my, m~)] 

+ 2 4 4  (m~ - m~)[2BI (k ', m,, ms) - Bo (0, m,, ms)] } ,  

(8) 

inw (k s) (slepton0 = gs { 4  [ ks [B, (k s, rex, m~) - 2Bsl (k s, m~, m~)] 
+(m~ - m~)B~(k s, rex, m~)] 
+ 4  [kS[Bl(k s, m~, m~) - 2Bsl(k s, m~, m~)l 
+(m~ - m~)Bl(k s, ms, m~)] 

1 2 
- ~ [ ceA( ml  ) + s~A(ms) - A(mv)]} , 

1 
i Y L g z ( k 2 ) ( s l e p t o T t s )  -~ - ~ g 2 k S t o { ( 2 8 2  - c 2) [ B o ( k  s, 'D'/,1,77/,1) - 4B21(lg 2, 'D~I, m l ) ]  

+ (2s~ - s~)[So (k s, TF/.2,/122) - -  4BsI (k  2, m 2 ,  m2)] } ,  

i~(ks)(sZevto~s) = gskss~ ~ [B0(k  s, too, too) - aBsl(k s , too, ,%)] ) .  (9) 

Here m,(a  = 1,2) and mo are the mass eigenvalues corresponding to one slepton genera- 
tion. One must,  of course, sum over generations (~, ~, ~) and add up similar contributions 
from squarks. 

With  regard to the second class (53 = 0, 54 ~ 0) of radiative corrections to u~e- 
scattering, we get contributions from Figs. 4 and 5. The  net 54 output  from diagrams 
(c.1)-(c.3) adds up to zero, due to a Ward identity. Diagram (c.4), however, is non- 
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vanishing and UV-finite. Therefore 

g2 
54(Fig.4) = 167r 2 ~-~(N* 2 - tog*,)(No~. - togol) 

x l  e ^ o o L M,~oM~ 
[~O#aEo(mo,, M~, M~) - O ~  m~-~ = -~o2F(mo,, M°a, M~)]. 

Finally, the pay-off from the diagrams of Fig. 5 is also (globally) finite and reads 

(10) 

g2 
- I (v, iYji) 5,(Fig.5) + E E )2 * 

a ij 
• 2M~Mj 

× Mj, mo(m ) - Mj, mo( ) )] 

i l  ~. al  bl ) ba o (  i , m a ( t ~ ) , r n b ( # ) )  

]v, lJ In l I (11) 

Prom these eqs. it is clear that, in contradistinction to the SM, one gets nonvanishing 
hypereharge contributions to 5p at l-loop in the MSSM. 

Concerning the full l-loop structure of 61, associated to the definition (2.21) of the 
Fermi constant, it gets multiple contributions from Figs. 6 and 7. Its full analytical 
form is a rather cumbersome expression, similar to the ones we have just derived for 5a,4, 
and will not be quoted here [18]• There is, in addition, the universal two-point function 
contribution from IIw(inos + sfermions) already given in eqs.(7) and (9). 

The last step in our renormalization program is to compute 62, which is associated 
to the defnition (2.23) of the fine structure constant. By explicit computation one can 
easily check that, in the static limit k 2 = 0, the various SUSY vertex corrections involved 
in Coulomb scattering (of muons on electrons, for example) are exactly cancelled by 
wave function renormalization of external legs (as expected from the SUSY analogue of 
standard Ward identites). Furthermore, the '7 - Z mixed vacuum polarization function, 
although it develops a pole at k 2 = 0, its contribution is depressed by an extra factor of 
IL~_z(k2)/M~ oc k2/M~ with respect to the tree-level amplitude. To finish, notice that 
SUSY box diagrams in Coulomb scattering obviously contribute 62 = 0 in the static limit, 
so we are left with IL~(inos+ sfermions) (Cf. eqs.(7) and (9)) as the only non-vanishing 
type of SUSY contribution to 62 (Cf. eq.(2.31)). 

Gathering up the complete analytical formulae for 5~ (i = 1, 2, 3, 4), I am now ready to 
present the numerical analysis of SUSY l-loop corrections to p, Mw and Mz. This I do in 
Figs. 8-10, to be next discussed in more detail. As mentioned earlier, I have not committed 
myself to any particular model, but just respected the current phenomenological (more 
or less stringent) bounds on sparticle masses [28]. For charged sleptons: 

mo(D > 45 CeV, (12) 
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and for the chargino (q+) masses 

M~ > 45 G e V .  (13) 

As for sneutrinos, there is a bound from the non-SM contribution to the non-hadronic 
width of the Z, which roughly implies 

mo~ > 30 - 40 GeV . (14) 

Neutralino (~o) bounds are not so much stringent 

M ° > 20 - 30 GeV (15) 

and they are automatically satisfied by the eigenvalues of the 4 x 4 matrix (3.6) after 
imposing the chargino bound (13) on the eigenvalues of the 2 x 2 matrix (2.5). Finally, 
concerning squarks the situation is less clear. For example, the fact that the top-flavoured 
squark ("stop") could be lighter than its SM partner, changes the usual bounds from CDF 
and UA2 [29]. In any case a bound 

my _~ 70 GeV (16) 

for all the generations looks reasonable to estimate the kind of effects to to be expected 
in our analysis. 

The window in the (M, #) parameter space, that I have selected in Figs. 8-10, covers 
a wide spectrum of mass eigenvalues of the chargino and neutralino mass matrices. The 
lightest eigenvalue in both cases ranges from the lower experimental bounds mentioned 
before up to about 200 GeV -around the upper corners of the plots. The blank regions 
on these plots are phenomenologically exluded by the bound (13). Although some new 
experimental information could restrict these regions even more severely [28], I feel that 
they will suffice to illustrate my point. I have selected the two extreme values tan f3 = 2, 8 
for the quotient between the Higgs v.e.v.'s. Let me point out that there is nothing 
special in the selected window. By explicit numerical analysis, it has been check that the 
complementary window, namely the one obtained by interchanging the ranges of M and 
# chosen in Figs. 8-10, give very similar results. 

Let us now focus our attention specifically on Fig. 8, where.isolines of 5p susY (in 
%) are exhibited [30]. They are full l-loop corrections, as given by eq.(2.40) (not just 
eq. (2.41)!), except that I have not included corrections from the two-doublet Higgs sector 
of the MSSM (see below). Moreover I have decoupled the "oblique" correction (2.41) from 
squarks, the reason being that squarks enter the game only as universal type corrections 
and I want, for the purposes of illustration, to maximize the direct process-dependent 
effects. The point is that whereas the universal contributions (2.41) from squarks and 
sleptons are positive-definite (as can be easily checked analytically and numerically [17]- 
[19]), the process-dependent corrections may be of either sign and of the same order of 
magnitude. Therefore, in order to illustrate consistently the possibility that ~fp svs r  could 
be driven to negative values by the process-dependent corrections, I have to include the 
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full l-loop (universal plus process-dependent) corrections from sleptons, charginos and 
neutralinos, and omit the universal contribution from squarks. The results shown in Fig. 
8 indeed prove that there are regions in parameter space where the global 5p svs r  < 0. In 
the pure SM case, 5p can also get individual negative contributions from the Higgs sector 
being of the same order of magnitude than the genuine SUSY ones. However, in the 
MSSM, the two-doublet Higgs sector gives positive or negative individual contributions 
to 5p that are one order of magnitude less than those shown in Fig. 8 and so, as stated 
above, have not been included in the plots. Experimentally we know from global fits to 
the most important neutral current data, that [31] 

p = 1.006 + 0.004, (17) 

whence 
0.002 _ 5p <_ 0.01. (18) 

If we saturate this bound with the SM contribution from the top quark, we get the 
following allowed window for its mass 

80 GeV <_ m t <  180 GeV (19) 

-the lowest limit would be already surpassed by the CDF bound mt >_ 89 GeV if one 
assumes canonical (SM) decays [32]. From the analysis of Fig. 8 it follows that SUSY can 
change the prospects of the upper limit on mr. See also Fig. 5 of ref. [20], where another 
(complementary) window of parameter space is explored [30]. If the sign of the SUSY 
corrections keeps pace with that of the top quark, namely if 5p svsr  > O, then the upper 
limit on mt may decrease about 30 GeV. If it is the other way around, then, rnt could 
be as much as 30 GeV heavier than expected from the SM alone. In this respect let us 
remember that the upshot of various recent SM analysis of all the precision electrowcak 
experiments roughly agree that [1] 

mt ---- 125 + 30 G e V .  (20) 

We have, however, exemplified an scenario in which SUSY quantum effects could change 
the prospects on rn, expected from the pure SM physics. And viveversa, knowledge on 
mt (by direct production at the colliders) could result on hints of SUSY quantum effects, 
if the predicted deviations from the SM prospects are eventually confirmed. Let me 
emphasize, however, that the kind of effects from SUSY that I have focused my attention 
on could be different if 5p svsr  becomes dominated by "oblique" squark contributions 
(2.41). This alternative scenario, characterized by a large stop-sbottom mass splitting, 
has already been widely discussed earlier [17]-[18], and also recently [19], in the literature, 
whereas the present complementary picture was largely ignored and should also be taken 
into account [20]. 

Turning now to Figs. 9-10, we consider the SUSY radiative corrections to the W 
and Z masses [21]. Here we restore the squark contributions and consider the full l- 
loop yield of the complete analytical calculation. The maximum (negative) contributions 
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corresponding to the situation of sfermion masses equal to the lower bounds stated above 

are computed to be 

tfMSwVSY=-230 MeV , 5M~ v s r =  -380 MeV for tan]~= 2 (21) 

and 
8M susr  = -215 MeV , 6M s v s r  = -340 MeV for tanfl  = 8 ,  (22) 

and come from the region of the (M, #) parameter space almost over the rim of the physical 
region. Our emphasis, however, is placed upon the radiative corrections obtained in the 
main body of the allowed area. The total SUSY corrections to the W and Z masses, in 
the case under consideration, stabilize around 100 MeV <_ I~fMSVSr I ~ 150 MeV and 
150 MeV < I~M~VSr I < 250 MeV, respectively. A relevant feature of this stabilization is 
that even in remote comers of our windows, where the charginos and neutralinos are rather 
heavy (100 - 200 GeV), the radiative shifts to Mw and Mz persist to be above 100 MeV 
and 150 MeV, respectively. I have checked that very similar results hold when changing 
in several ways the mixing angles in the sfermionic sector. Furthermore, although I have 
chosen to display detailed numerical plots only for the case corresponding to the present 
lower limits on the sparticle masses, I have also explored regions of a heavier spectrum. 
For instance, consider the case of tanfl -- 2, and assume that all squarks and charged 
sleptons have a mass around 100 GeV while sneutrinos (much more difficult to detect or 
to bound) remain as before. The ensuing SUSY radiative corrections to Mz corresponding 
to this situation can be as big as -500 MeV. Finally, I want to point out that the results 
obtained from the present complete analysis constitute a revision of the partial results 
presented earlier on this subject in ref. [18]. Although the general conclusion- namely, 
that the maximum SUSY radiative corrections to Mw, z are of at most a few hundred 
MeV- remains qualitatively unmodified, the sign of these corrections has been fixed to 
be negative. This is in contrast to the partial numerical results exhibited in ref.[18], 
which were mainly based on vacuum polarization ("oblique") estimates, and explicitly 
demonstrates-once again- the relevance of the process-dependent corrections. We shall 
see in the next section that the sign of the corrections may be of crucial phenomenological 
(hence, practical) relevance. 

5. Concluding Remarks 
The present experimental precision achieved in the measurement of the Z mass at LEP 
can be considered highly satisfactory [1]: Mz = 91.175 ± 0.021 GeV. In practice, it 
is a quantity "without" error. As for W-mass measurements, the situation is not bad 
but still far not comparable. Direct determinations from the colliders give a value for 
Mw, centered at essentially 80 GeV, with errors near 400 MeV [33]. On the other hand, 
the error on the W mass from the SM analysis of precision electroweak data, given by 
Mw = 80 ± 0.15 GeV [1], is nearly twice better than the collider error. Clearly, we have 
to wait for LEP II before improving the W-mass measurements substantially and model- 
independently. There is no way at present to disentangle our SUSY radiative corrections 
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Figure l h  Potentially relevant SUSY 2-loop "oblique" contribution. 

to M w  from the large experimental errors. Fortunately (perhaps optimistically), the 
expected precision at which M w  is to be measured in future experiments with hadron 
colliders and LEP II is about 8 0 -  100 M e V  [34], hence at the level of our SUSY radiative 
corrections. Nevertheless, this does not yet mean that these corrections can be measured, 
even if really there and with the predicted maximum size, unless the precision in which 
our inputed s 2 from the ratio R in eq.(2.1) achieves the level of 1% or better, which 
is certainly not the case at present. The ratio R suffers from systematic uncertainties 
connected with the relative normalization of the neutrino and antineutrino fluxes. It is 
currently measured with an error of 6R -- 0.1, which translates into an error on the mixing 
angle of ~s~/s~ = 4%. In future experiments [35], one expects to lessen this error at the 
level of 2%, though it will be difficult enough [36]. However, using the special ratio 

R' = a(vt'e ---* vt'e) 
a(P,e ~ P~,e) + a(v~e ~ v~e) ' (1) 

which has the advantatge [37] of highly reducing the systematic uncertainties, s 2 will 
eventually be pinned down at the desired level of 1% or even better. In the meanwhile the 
current 4% error on s 2 is the real stumbling block to unraveling potential SUSY radiative 
corrections from the very accurate ("zero error") present measurement of the Z mass. In 
spite of the planned improvements on this issue, the computation of M z  in the MSSM, 
within our framework, inherits an error at the tree level ( namely, 5Mz  ~ 300 M e V  for 
6s2/s~ = 1%) which could still be too big to hope for seeing any clear footprint of the 
new physics. There is, however, a circumstance that may help here. From the analytical 
results of ref.[3], one can check that the radiative corrections to M z  from the top-bottom 
family are, for relatively large values of m~ (150 - 200 GeV), negative and of the same 
order of magnitude than our genuine SUSY radiative corrections. Therefore, an intriguing 
possibility is left open for the future: the sum of both contributions could produce an 
enhanced signal (say, 5Mz  = -(500 - 800) M e V ,  depending on whether we consider the 
ease of Figs. 9-10 or the more favorable situations mentioned at the end of Secc. 4), well 
above the expected errors, that should be visible and could be interpreted as evidence of 
both of a (relatively heavy) top quark and of SUSY. 

I would like to point out, in passing, the possibility that a class of 2-loop "oblique" 
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SUSY corrections could play a significant role in the previous picture. A typical case 
(among many others) is shown in Fig. 11, where a scalar top, t, is exchanged across 
the fermion loop. An estimate of the contribution from it (after subtraction of UV- 

divergences) yields: 
392( mt 2 ( m r ) 2  m 2 

[6M~[ ~ - ~ 0 , 1 - ~ 2 ,  ~ log 2 • (2) m~ 

To maximize this effect, take mt = 200 GeV and m~ = 2000 GeV. It follows that 
]6Mz[ = 400 MeV, i.e. of the order of the l-loop corrections!. Thus, depending on 
the sign of these corrections, they could enhance in a remarkable way the final SUSY 
radiative signal, or on the contrary they could even cancel it to a large extent. Although 
we would, of course, prefer the first possibility, both alternatives are interesting from the 
theoretical point of view: 2-loop corrections being of the same order of magnitude than 
l-loop corrections looks an unusual situation and certainly deserves further study [38]. 

To conclude, a practical observation. As recognized previously, despite the theoretical 
cleanness of the calculations in this framework (which is free from strong interaction 
effects), uue-scattering experiments are affected with experimental uncertainties greater 
than those in deep inelastic scattering. Therefore, an analysis of the latters would be more 
realistic and useful. 'This situation becomes more dramatic and noticeable at the prospect 
of lessening the error on 6s~ down to 0.6% in future deep inelastic neutrino experiments, 
as has already been emphasized by members of the CCFR Collaboration [39]. With such 
a precision one could even reverse the direction followed by our calculations and try to 
predict s~ obtained from these experiments using the very precise value of Mz as an 
experimental input [40]. Thus we may also view the present work as an exemplification of 
the corresponding effects that can be expected in the more precise framework of present 
and future neutrino deep inelastic experiments. We have not yet carried out such an 
analysis, but we expect that it should exhibite the same kind of behaviour [41]. May 
be in the meantime we shall be able to produce a relatively light (~ 50 GeV) physical 
supersymmetric particle before achieving the required precision, thus obviating SUSY. If 
not, at least we may be confident that the potential SUSY quantum effects on Mw, z and 
p could be sizeable and stable, even for a SUSY spectrum involving masses within a range 
(.~ 100 GeV) which certainly cannot be reached directly from clean e+e - collisions in the 

foreseeable future. 
Acknowledgements :  I would like to thank Prof. Hollik for inviting me to participate 
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5. Appendix  
I display in this appendix, very briefly, the essentials on l-loop integrals associated to 1-, 
2-, 3- and 4-point Green's functions used throughout the text. I adopt in part the notation 
of refi[42] (where many more details are given), but I use the metric goo = 1, g~i = -1 .  
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The basic 1-point loop integral is given by 

d~q 1 - i  2 
A(m) = (2~r)" q2 _ m 2 = 16r2 m (A + logm 2 - 1) , (1) 

where the ultraviolete (UV), dimensionally regularized, pole is denoted by 

2 
A ~ - + 7E - log 4 r ,  (2) 

e 

with e = n - 4 - .  0 and VE being Euler's constant. The basic set of functions B0, B1, B21 
and B22 associated to two-point loop integrals is defined by 

J amq 1 (21r)" (qS _ rn~)[(q-  k) s -m221 = B°(kS' ml '  ms) ' 

f dnq = k~,Bl(k2,ml,ms) q~, 
(2~) '~ (q~ - m~)[(q - k): - m 2] 

f amq = k~,k,,B21(k 2, ml,  rn~) + &,,,B2s(k 2, ml, m2) .(3) 
q~,q,, 

(2¢¢) n (qU m~)[(q - k) ~ - m]] 

I need the explicit form of the B-functions for k 2 = 0 and k 2 = M~c,z , so I compute them 
for arbitrary k2: 

- i  
Bo(lc2,ml,m2) = 1i~2[ A + Io(kS,ml,m2)] , 

Bl (k  ~,ml,m2) = - i  .1 A [~ + I i (k  s ,ml ,m2)]  

--i 1 
B2~ (k 2, ml,  rn2) = ~ [~A + 12 (k 2, ml,  m2)] ,  (4) 

where 

In(k2,ml,m2) = - - .  
F=-)- 

1 {logk2 + ~ [log(1 - Xr) + F~+,(xr)]} 
n + l  

X 1 x n - a  
F . ( x )  = - x "  log  - ~_~ 

X a = l  C~ 

1 2 

A ( k  2' m l ,  ?Tb2) = [k 2 - (/?'~1 "3 L ?'/22) 2] [k 2 - ( m y  - m2)2]  • (5)  

As far as 3-and 4-point loop integrals are concerned, it suffices toeva lua te  them at k 2 -- 
0, since the low momentum transfer in the three processes considered is negligible as 
compared to the average mass of the SUSY particles, Thus the basic 3-point loop integrals 
needed are Co, which is finite, and C~v, which is UV-divergent: 

- i  1 
1~-~ 2 C0 (ml, m2, m3) = / daq (2r)4 (q2 _ rn~)(q2 _ m~)(q2 _ rda2) 

- i  
= 16~r2(rn~ - rn~) F(ml ,  m2, ma) , 

,, - 2  (6) F(rnl, rn2, ms) = log + -- log ~ ~--- 
m22 m i  m s -- ra 2 m2 3 - -  1 
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and 

CO (ml,m2,m3) = f amq q,q, 
(2~),, (q~ - m ~ l ) ( d :  ~ ) ( q ~  - ~ )  ' 

- i  .1 A = 1-~2g~,.L'~ ÷Co(ml,m2,m3)] 
1 - 3  

0 0 ( m l ,  m2, m3) = ~ [ y  + logm~ + k o ( m , ,  m~, m 3 ) l ,  

Eo(mI, m2,mz) = m 2 logm32 2 m~--- ra~ m--~ + --2mi-~2F(ml',,.1 - -  " ' 2  ms' ?7?'3)" (7) 

The two necessary 4-point loop integrals are UV-convergent: 

- i  1 
16rr2Do(ml,m2,m3,ma) = f d4q (27r)4 (qZ _ mZl)(q2 _ m~)(qZ _ m])(q2 _ m~) 

- i  rF(ml,m3,~.) F(m~,_r.3,m4)] (8) 
= 16~r2(m~ - m~) L m~ - m ]  - m2 = - m3 2 

and 

d4q qt, q, 
0 TIZ Dt~v(ml,m2, 3,ma) f (27¢)4 (q2 _ m~)(q2 _ m~)(q2 _ m2)(q2 _ m 2) 

m 2 
_ _  --i gtw [ m2m~F(ml,m3,ma ) ~Z2_ 2.F(m2,m3,m4)] " 
- 6 ~  (m~ - m ~ ) ~ . ~  - m 2  - m 

(9) 
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1 I n t r o d u c t i o n  

The electroweak theory based on the spontaneously broken S'U(2) x U(1) gauge sym- 
metry is consistent with all available experimental data, including high precision LEP 
experiments. However, the actual mechanism of the spontaneous gauge symmetry 
breaking remMns unknown. It is very likely that its understanding, necessary to com- 
plete the electroweak theory, will also be a link to new physics beyond the Standard 
Model. 

Since long we know two important constraints on the mechanism of the SU(2)x U(1) 
symmetry breaking. These are: the experimental value of the p parameter, p ~ 1, and 
strong suppression of flavour changing neutral current (FCNC) reactions. The former 
translates into custodial SU(2)v synnnetry of the electroweak vacuum and the latter 
has to be reconciled with the fermion mass generation in a model considered. The 
simplest possibility consistent with those constraints is the minimal version of the 
Higgs mechanism, with only one Higgs doublet responsible for the synnnetry breaking 
and for the fermion mass generation. Extensions to models with several Higgs doublets 
are also acceptable provided their couplings to fermions are consistent with the FCNC 
constraint. The easiest way to achieve this is to impose such symmetries that only one 
scMar doublet couples to right-handed fermions of the same charge. 

However, theories with elementary scalars suffer from the well known naturalness 
problem and it is strongly felt on the theoretical side that the actual mechanism of the 
gauge symmetry breaking goes beyond the minimal version of the Standard Model. The 
three main ideas proposed so far to remedy the naturalness problem are technicolour 
models, strongly interacting Higgs sector and supersymmetry. Recent high precision 
LEP data seem to go against generic (extended) technicolour models [1], adding to 
the known difficulties with such models in reconciling the suppression of FCNC with 
the quark mass generation. The remaining two alternatives wait for experimental 
judgement. 

Supersymmetry, effectively broken at some scale M > Mw, is at present the most 
interesting theoreticnl framework which naturally accommodates elementary scalars. 
The simplest and most economical supersymlnetric model is the Minimal Supersym- 
metric Standard Model (MSSM). It is defined by a) gauge group SU(3) x SU(2) x U(1); 
b) minimal matter content: three generations of quarks and leptons and two Higgs dou- 
blets, plus their superpartners; c) an exact discrete symmetry: R-parity; d) explicit 
"soft" breaking of supersymmetry by gaugino and scalar mass terms and trilinear scalar 
couplings. 

The MSSM can be embedded into grand unification schemes with the corrcct value 
of sin 20w(Mz)  [2] and the lightest supersylnlnetric particle is a natural candidate for 
dark matter. Various non-minimal supersymmetric extensions of the Standard Model, 
which have typically more free parameters, often give thc MSSM as the low energy 
effective theory [3]. Thus, the MSSM is an interesting laboratory, both for theoretical 
and experimental study (and to discover effects) of supersynnnetry. 

The Higgs sectors of supersymmetric extensions of the Standard Model require at 
least two Higgs doublets (for the supersymmetrie structure of Yukawa couplings and 
for the triangle anomaly cancellation). The minimal such an extension (the MSSM) 
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is naturally a two-Higgs doublet model and, moreover, with only one doublet coupled 
to right-handed fermions of a given charge (i.e. with no conflict with the suppression 
of the FCNC). The two-Higgs doublet structure combined with supersymmetry offers 
one more attractive, though speculative, feature namely the possibility of partly under- 
standing the pattern of fermion masses. The full solution to this problem most likely 
requires really new ideas and may be closely related to our understanding of the fermion 
generation puzzle. However, it is still conceivable that at least part of the mass problem 
has more conventional character. Here I mean the question: how is the isotopic spin 
symmetry of the quark masses broken? Supposing that in the first approximation only 
the masses of the third family are generated the question actually is why m, >> m~. It 
is an old idea that the up - and down - quark masses are driven by two different Higgs 
doublets with vevs such that mt/mb TM V2/731 ----- tan/3 (where v2(vl) is the vcv of the 
Higgs field coupled to the up (down) quarks) whereas the Yukawa couplings for the 
top and bottom quarks are approximately equal, ht ~ hb. This mechanism of the iso- 
topic spin symmetry breaking looks particularly attractive in supersymmetric models 
which not only must, for consistency, have at least two Higgs doublets but also offer 
the possibility of the SU(2) x U(1) symmetry brealdng by radiative corrections, with 
tan/3 >> 1. Indeed, it has been found [4] that for ht -~ hb the SU(2) × U(1) symmetry 
breaking with tan/3 >> 1 is driven by the right-handed squark masses and indirectly by 
gaugino mass (Ma): sun and sdR masses evolve differently simply because of different 
U(1) charge assignment.So, large tan/3 values belong to the very interesting region of 
the parameter space in the MSSM. 

Given good reasons for supersymmetry, in this lecture we concentrate on the Higgs 
sector of the MSSM and in particular on the recently discovered large loop effects in 
this sector. Our purpose is to give a not too technical overview of the problem. There 
seems to be little point in repeating technical details which are available in the original 
papers. Usually, loop effects are associated with high precision data and here there is 
no data whatsoever. Therefore it seems appropriate first to recall the motivation for 
this effort. 

2 M o r e  m o t i v a t i o n  for s t u d y i n g  the  M S S M  Higgs  
sector  

The Higgs sector in the MSSM has several very distinct features. In particular, in 
the tree approximation there is in this model always at least one light neutral scalar 
(Mh < Mz), no matter how high is the scale of soft supersymlnetry breaking. This 
looks very fortunate as the scale of supersymmetry breaking is likely to be relatively 
high, say, 0(1 TcV) and therefore the Higgs boson may well be the first experimental 
trace of supersymmetry (or one may hope to rule out the MSSM by non-observation of 
the scalar in the predicted mass range). However, even if softly broken supersymmetry 
is indeed realized in nature, it is quite likely that the other Higgs particles are much 
heavier, with masses of the order of the supersymmetry breaking scale. Ttlis scenario 
is suggested by the naturalness arguments, as it will be discussed later. 
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• Clearly, we are facing two important questions: 
a) what are the potential new signatures of the supersymmetric Higgs particles and, 
in particular, of the lightest one as compared to the minimal Standard Model Higgs 
scalar search? 
b) suppose a Higgs particle is observed: shall we be able to identify it as the minimal 
Higgs scalar or the lightest supersymmetric Higgs scalar or still something else? 

Those questions can easily be answered in the tree approximation [see J. Kalinowski, 
this Volume, for details]. Let us recall only the main facts. The only free, unknown, 
parameter of the minimal SM Higgs sector is the scalar mass whereas all its couplings 
are known in terms of the gauge couplings and the fermion masses. The dominant 
production mechanisms are then obvious: this is the Bjorken process in the e+e - 
collisions and the gluon-gluon fusion in hadronic collisions. In the MSSM the Higgs 
sector depends at the tree level on two unknown parameters. In terms of only two free 
parameters one predicts masses of three physical scalars and one pseudoscalar as well 
as their couplings to gauge boson, to fermions and their self-couplings. The two free 
parameters can be conveniently taken as e.g. MA (the mass of the pseudoscalar) and 
tan/3. Among important tree level results are the well known relations: 

Mh < min(MA, Mz) 
MH > max(MA, Mz) 

M + > max(Mw, MA) (1) 

where Mh, MH and M + are the lighter, the heavier aud the charged scalar masses, 
respectively. The couplings of the MSSM Higgs particles are summarized below (in 
units of the minimal SM Higgs scalar couplings) 

_ _  u 

ZZ ZA UU DD 
c o s  o ~  - -  s i n  c ~  

h s i n ( f l - a )  c o s ( a - f l )  sinfl cosfl 
sin c~ cos c~ 

- H c o s ( f l - o  0 sin(o~-fl) sinfl cosfl 

A - -  - -  cot/3 tan/3 

where the angle a is the mixing angle which diagonalizes the tree level mass matrix for 
neutral scalars. We observe that there are now three potentially important production 
mechanisms (for sake of definiteness we discuss only the e+e - collisions at energies 
below the threshold for the tt production): 

H o 

- .  o ~ . . . ¢ . ] . ' "  

• • % 

• o " H °  1"11. 
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They are complementary in the sense that different nlechanisms dominate the produc- 
tion process in different regions of the (tan fl, MA) parameter space. [5,6] The width 
and decay modes of the Higgs particles for different values of (tan fl, MA) can, of course, 
be easily discussed, too. 

We also note that for certain values of (tan fl, MA) the lightest supersymmetric 
Higgs particle h resembles closely the Higgs scalar of the minimal SM. This is shown in 
Fig. 9: the cross sections for e+e - ~ Zh are very similar to the analogous cross sections 
for the SM Higgs scalar for MA > Mz and for any value of tan ft. It is clear from the 
Table that simultaneously the cross sections for e+e - ~ hA are strongly suppressed. 
The widths and branching ratios of the h are somewhat more sensitive to its actual 
nature but, in general, the tree level results suggest that it may be rather difficult to 
distinguish experimentally between the lightest supersymmetric Higgs scalar and the 
minimal SM one. Clearly, it is very important to known how much modified are all 
those tree level results by loop corrections. 

The interest in the Higgs sector of the MSSM follows also from the fact that its 
strong dependence on tan fl links it to several other very interesting investigations. 
First of all, Yukawa couplings of the charged Higgs bosons in two-doublet models 
depend on tan ¢/, too. Therefore, potential departures from the SM predictions for the 
charged current mediated processes are sensitive to constraints on tan/~ derived from 
studying the Higgs sector or, conversly, present experimental data for those processes 
give some limits on tan fl and M +. Upper limits on tan fl for different values of M + 
can be obtained from r and b decays [7] and lower limits - mainly from K - K and 
B - B mixing [8]. Those results refer to tan fl defined as the tree level parameter and 
give:l/2 < tan fi < M+/1GeV. Another physical quantities dependent on tan fl are 
sparticle masses. Again, there is then a link between them and the MSSM Higgs sector. 

Those considerations become particularly interesting and constrained in the MSSM 
defined in terms of very few (four of five) free parameters specified at the Plan& scale 
(with the low energy parameters obtained by the renormalization group evolution via 
supersymmetric renormalization group equations) and supplemented by the require- 
ment of the radiative SU(2) x U(1) symmetry breaking.Remaining at the tree level 
of the low energy softly broken supersymmetric lagrangian, one then obtains strong 
interconnection between: 

radiative SU(2) x U(1) 
breaking 

Higgs sector 

neutralinos sparticle mass 
as dark matter spectrum 

The programme which has been followed by many authors is to study the parameter 
space of the model which is allowed after imposing presently available experimental 
constraints from all the three sector and from the requirement of the radiative S U x  U(1) 
breaking. In particular the latter one results in the limits 1 < tan [3 < rnt/rnb [9,4], i.e. 
much stronger than the experimental limits quoted earlier. 

Let us stress again: so far we have been talking about tree level results. Some 
of them are striking enough to ask the question: are they stable against radiative 
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corrections? For instance, if this were true for the tree level structure of the Higgs 
sector in the MSSM it would enormously facilitate the experimental task of seeing 
there the signal of supersymmetry or of ruling out the model. However, we envisage 
two potential sources of large l-loop corrections: reminiscence of soft supersymmetry 
breaking and large top quark Yukawa coupling. 

The rest of this article is devoted mainly to l-loop corrections to the Higgs sector 
but we also try to keep in mind the question of a consistent approach simultaneously 
to all the problems interconnected at the tree level. It has been pointed out already 
some time ago that l-loop corrections to the effective potential are important for the 
radiative SU(2) x g(1) symmetry breaking [10]. 

3 C l o s e r  l o o k  a t  t h e  M S S M  H i g g s  s e c t o r  a n d  t h e  

o r i g i n  o f  l a r g e  r a d i a t i v e  c o r r e c t i o n s  

The Higgs potential in the MSSM reads: 

V m2-~lH1 + m2-~2H2 2 ~ b = -- m12(~bH1 H2 + c.c) 

1 2 +-~(g~ ÷ g~)(-H~H~ --H2H2) 2 - ~ I -HIH2 [2 (2) 

where ~12 = -1 ,H1  and //2 are the two Higgs doublet fields and m~ ^ 2 = ml + #2; # 

is the coefficient of the HIH2 mixing term in the superpotential, 7~, rh~ and m~2 are 
soft supersymmetry breaking Higgs boson mass parameters with m~2 defined to be 
negative. The crucial point about the potential (2) is that,  due to supersymmetry, its 
quartic couplings are SU(2) and U(1) gauge couplings. The only free parameters are 
the three mass parameters. It is convenient to introduce the tree level mass eigenstate 
basis: 

H~ = ~ (Vl  + cos c~g - sin c~h + i sin flA - i cos fiG) 
sin OH- - cos OG- 

H2 = ( c°sOH+ +sinOG+ ) (3) 
:~2 (v2 + sin c~H + cos c~h + i cos ~3A + i sin/~G) 

where h, H, H + and A are physical particles intoduced earlier and G and G :l: are 
neutral and charged Goldstone bosons. For vl and v2 which minimalize the tree level 
potential one has 9 = fl with tan fl = v2/vl. The potential has its minimum for 

vl - v cos fl v2 = v sin ~ (4) 

where 
2 I.~12 12 

sin 2fl -- m~ + m 2 (5) 

v= 8(m~ - . ~  tan ~ ~) 
= (gl ~ + g~)(tan 2 Z - 1) (6) 
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Since ~12 + v~ -- v is fixed by the value of the Fermi constant, all the physical Higgs 
boson masses and their couplings are expressed in terms of only two unknown param- 
eters. They can be conveniently taken e.g. as tan fl and MA where: 

MA = m~ + m~ (7) 

The other two Higgs scalar masses read: 

M2 1 .M2 h,H ~- -2( A "~- M~ T ~(M~ + M~) 2 - 4M~M~ cos 2 2/3 ) (8) 

We see that the tree level mass spectrum is symmetric with respect to tanfl  = 1. 
Tan /~ is not an observable but  is a convenient parametrization. The real content of 
the supersymmetric tree level mass relations is in "natural" relations relating physical 
observables to physicM observables, such as Eq.(1) and 

A = M~ + M ~ / -  M~ - M} -= 0 
M+2 = MA 2 + M~ v (9) 

(for more discussion on best choice of parametrization see Section 5) 
It is easy to understand now the origin and magnitude of the radiative corrections 

to the Higgs boson masses. Let M be the scale of the soft supersymmetry breaking 
sfermion masses (responsible for fermion-sfermion mass splitting). In the static approx- 
imation, i.e. approximating the effective action by the l-loop effective potential, and 
neglecting terms suppressed by inverse powers of M in the expansion of the effective 
potential all the loop corrections induced by the soft supersymmetry breaking can be 
absorbed into renormalization of the parameters in the Higgs potentials. One gets 

~ 2-- rh~H2H2 ~ 2 ~ b = mlHIH1 + - -  m l 2 ( g a b H  1 H 2 + c.c) 
+A1 [HI [4 +A2 t/ /2 [4 +A3 [H1 12[ H2 12 +A4 [ H-all2 [2 (10) 

The appearence of other quartic couplings is protected by the symmetries of the model. 
It is clear on dimensional grounds and from no-renormalization theorem for theories 
with unbroken supersymmetry that the loop corrections to the parameters are as fol- 
lows: 

(~m~ * 2 = m, - m~ ~ 0(M 2) (11) 

and logarithmically divergent; 

(~)~1 ---- )~1 g2 + g22 (~A2 = Au g~ + g~ (12) 
4 ' 4 

(~A3 = A3 + g~ ÷ g---~12 (~A4 = A4 + g~ (13) 
4 ' 2 

all finite and 0(ln M).  
We see that the largest (0(M2)) and divergent loop corrections can be absorbed into 
the free parameters of the model, to be fixed from the data (Appelquist-Carrazone 
decoupling). The supersymmetric mass relations get finite, calculable corrections de- 
termined by 5Ai. The dominant l-loop contribution to the effective potential is given 
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by the following diagrams 

H2 4k,,,.,JH 2 ,,-",'., "% ,¢ 
: "~ 

, : @ : : - t -  " y + . ,, 
: k " "  " f - .  '-k , :" - - -"*"" 

Y. " '~"- r ,  q . .~,-- , , . .  , 

q~ "',w, ¢"" "~ 

H2 H2 
- - , - - \  + + . . . ,  . . . . .  , .... + 

tR "" - 4" 

Therefore one gets (schematically): 

V 4 In mt m4 "~ t  ,~ -~ ~ A -~ O(g~@~ ~ in ) (14) 
mstop ft~, W fI~stop 

At this level of approximation the physical Higgs boson couplings remain the tree level 
couplings with new mixing angles a and ft. There is one comment to be made here. The 

2 parameters suggest, in line with the standard naturalness 0(M:) corrections to the m i 
arguments, that "natural" values for the ra~s, and therefore also for the pseudoscalar 
mass ]VIA, are 0(M). 

4 Survey of the existing l-loop calculations 

Radiative corrections to the Higgs sector in the MSSM have recently drawn a lot of 
attention [11-17]. Those calculations differ in their method and the level of complete- 
ness. One can single out three different approaches. Each approach has i'ts virtues and 
limitations when judged according to the two criteria: 
a) precision in the Higgs sector 
b) universality (simultaneous analysis of the four problems from the previous Section). 
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The first one is the effective potential approach, introduced in the previous Section. 
The most extensive analysis along this line is presented in ref.[13]. The full l-loop 
effective potential reads: 

¼(Q) = Vo(Q) + AVe(Q) (15) 

where 
.M 2 3 AVa(Q) = StrAd4(ln Q~ 7) (16) 

Here, Vo(Q) is the tree-level potential evaluated with couplings renormalized at some 
scale Q and Str denotes the supertrace. The Higgs mass-squared matrix is taken to 
be the matrix of the second derivatives of V1 with respect to the Higgs fields, i.e. all 
the p2 dependent effects present in the exact formula: 

2 d2V Iv=, + E(O) 2 = - ( 1 7 )  mphys deft2 

are neglected. The method can include, however, all the details of the sparticle mass 
spectrum like e.g. t n -  tL mass splitting and, at least in principle, also the contribution 
from the gauge sector (the latter is technically not easy and has been neglected in the 
actuM calculations). In this approach the physical Higgs boson couplings remain the 
tree level couplings with the mixing angles/3 and c~ determined by the minimulization 
of the Va and by the diagonalization of the new mass matrix, respectively. 

The method offers a relatively simple connection with the question of the SU(2) × 
U(1) symmetry breaking by radiative corrections: this question and the corrections to 
the Higgs sector can be discussed together for the same set of parameters chosen at the 
grand unification scale. Consistent calculation of the l-loop corrected other sparticle 
masses and couplings is, however, impossible. 

The second approach is based on the renormalization group evolution of the param- 
eters of the effective low energy theory down to the energy scale O(Mw), according to 
the renormalization group equations obtained after decoupling of the heavy particles 
at their thresholds. We begin with the softly broken supersymmetric lagrangian, with 
the scalar potential (2), valid at the energy scale M where M is the scale of the soft 
supersymmetry breaking. If we make the simplifying assmnption that all the sparticles 
aquire inasses close to M(M >> Mw say, M ,,~ 0(1 TeV)) and can be decoupled at the 
scale M, then the parameters of scalar potential evolve down with the scale according 
to the RGE of the SM with two Higgs doublets. Our assumption is rather crude as 
we know that generally some of the sparticles remain light (e.g.' some charginos and 
neutralinos). The method can be, however, improved by using the recently derived [20] 
RGEs for all the parameters of the MSSM after decoupling of only squarks and gluinos 
at the common scale M. 

The RG approach has its obvious limitation: it is impossible in practice to take care 
of all the details of the sparticle mass spectrum, {n--tL mass splitting in particular. Also 
are present such shortcomings of the effective potential approach as no p2 dependence 
and no l-loop corrections to the ZZh and ZhA vertices. However, the RG approach has 
at least two important virtues. It summs up all the leading logarithms ln(M/mt) and 
can, therefore, be trusted even for relatively high values of M. Secondly, it provides a 
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very simple and consistent framework for studying at the same time all four constraints 
of the previous section on the parameter space of the minimal supergravity model [18]. 

Here we present some results obtained in the RG approach under the assumption 
that all sparticles can be deconpled at the common scale M. The RG equations of the 
SM with two Higgs doublets are used to evolve the parameters of the scalar potential 
from the scale M (where they satisfy the supersymmetric boundary conditions) to the 
scale Qtop where the Higgs boson masses are calculated. The scale Qtov is chosen so 
that for a given tan fl (which in this approach is always the tree level tan fl and for 
which we want to study the scalar masses) the l-loop corrections to our low energy 
potential are minimal: 

0AV1 ¢°) 
cOvi , ~ 0 (18) 

The main contribution to AV1 comes from the top quark. Therefore we fix Qtov by the 
condition: 

(0 4 4 3 Yt2v~ 
0--~2 (Yt v2(-  ~ + In -~2op ) ) = O (19) 

which gives Qtop "~ mt/x/~. 
In Fig.10-15 we show some results obtained in this approach. Their comparison 

with the results of ref. [13] (effective potential approach) and with the complete l-loop 
analysis of ref. [16] will be briefly discussed in Section 6. 

The third approach to the radiative corrections in the Higgs sector is based on 
systematic perturbative calculation of all the relevant Green's functions. Potentially, 
this is the most complete approach to l-loop corrections in the Higgs sector and indeed 
such a complete calculation has been reported in ref. [16]. On-shell renormalization pro- 
gramme and t'Hooft-Feyman gauge are the best choices for this calculation. Of course, 
this analysis includes all the p2 dependent effects, loop corrections to all the vertices 
and can accommodate any values of the soft supersymmetry breaking parameters. 

This approach can be systematically extended to all other sectors of the MSSM, 
providing a general renormalization scheme for calculating loop corrections in this 
model. There are, however, two limitations. Firstly, as any l-loop calculation, it 
becomes less accurate with increasing value of the In M/m~. Secondly, it is now less 
straightforward to implement the constraints from the requirement of the radiative 
SU(2) × g(1) symmetry breaking (see the next Section). 

The details of this third approach are given in ref. [17]. Here we would like to 
concentrate on the problem of the renormalization scheme dependence and the most 
convenient choice of parameters for the Higgs sector. Those topics are discussed in the 
next Section. 

5 Choice  of  parameters  and renormal i za t ion  
s c h e m e  d e p e n d e n c e  

In the previous Section we have been advocating the mass MA and tan fl as a good set 
for parametrizing the Higgs sector in the MSSM. The reasons are basically two: they 
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parametrize the Higgs sector in an unambigous way and tan/3 is convenient also for 
other purposes. However, as with any other parameter in the lagrangian, the definition 
of tan/3 in terms of physical observables such as e.g. masses is renormalization scheme 
dependent. Other parameters of the Standard Model, like e.g. v = 240 GeV or sin 2 @w, 
also face the same problem but in the high precision tests they can be easily traded for 
measured physical observables such as the Fermi constant, the electric charge and Mz 
(and predictions for observables expressed in terms of observables show only residual 
higher order renormalization scheme dependence). Analogous strategy in our case is to 
use two observables as the two unknown parameters and the natural choice is MA and 
Mh. Now, however, there is a two-fold ambiguity at the tree level: due to the symmetry 
of the mass spectrum with respect to tan/3 = 1 each pair of values (MA, Mh) gives two 
sets of values for other observables in the Higgs sector. The symmetry is broken by 
radiative corrections (for fixed values of m, and mb Yukawa couplings take different 
values in the two regions) but in certain regions of the parameter space the ambiquity 
remains. Still, this is a very natural approach: calculate cross sections for given values 
of MA and Mh (using tan/~ only as an intermediate step) and present the experimental 
limits as the excluded region in those variables. 

On the other hand, presenting theoretical predictions for masses and cross sections 
(and experimental limits) in terms of tan/3 has the two virtues mentioned above.In 
particular it is motivated by theoretical considerations on the radiative SU(2) x U(]) 
symmetry breaking which constrains tariff to the region ] < tan/3 < m,/mb. One 
should remember, however, that those results have been always obtained in some spe- 
cific renormalization scheme (and with some at least implicit choice of the gauge fixing 
conditions) and the separation between tan fl < I and tan/3 > 1 regions is renormal- 
ization scheme dependent. Of course, it is quite legitimate to use tan/3 as a useful 
bookkeeping for constraints from different sectors provided the same renormalization 
scheme has been used in those sectors. This is actually the case in the effective poten- 
tial (and also in the renormalization group) calculation of the loop corrections to the 
Higgs sector and of the radiative SU(2) x U(1) symmetry breaking. The renormal- 
ization scheme of ref. [16] has been also designed to give tan/3 effectively very close to 
that of ref. [13]. 

The renormalization scheme dependence of tan/3 can be demonstrated most dra- 
matically when we compare calculations in the Landau and in the t'Hooft-Feynman 
gauges . Let us first recall that there are two commonly used approaches to perturba- 
tive calculations in theories with spontaneously broken (gauge) symmetries [19]. The 
first one is to expand around the tree level vacuum vo: for the scalar field we have 
then < ¢ > =  0 in the tree approximation but not beyond. We then calculate 2, 3, 4...- 
point Green's functions and the renormalization programme is set up for them. This 
approach is not convenient for our programme as large tadpole contributions appear 
not only in the Higgs boson but also in the fermion 2-point functions. 

Let us concentrate on the second approach which is to expand around the "true 
vacuum" i.e. around the vev v adjusted to give < ¢ > =  0 order by order in perturba- 
tion theory. Here we make contact with the effective potential approach. At the l-loop 
level we get then the following equation(s) for the scalar field(s): 
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• O f ,. \ 

b) 
where a), b), and c) represent the tree level tadpole, l-loop tadpole and tadpole coun- 
terterm, respectively. Among the tadpole graphs are Goldstone boson loops which are 
explicitly gauge dependent (gauge dependence of the gauge boson tadpole cancells out 
with the ghost tadpoles). It turns out that only in Lorentz'gauges Eq.(*) can be solved 
with the counterterms of the symmetric (unbroken) phase (i.e. with mass, ~m, and 
coupling constant, ~)~, counterterms). Hence, e.g. in the Landau gauge v ~ vR is fixed 
in terms of the renormalized parameters ran, An solely by imposing renormalization 
conditions on 8m and ~A. This is the basis of the effective potential approach. In the 
R~ class of gauges an additional counterterm ~v is needed to solve Eq.(*),to cancell the 
~-dependence of the Goldstone boson tadpoles[19]. In these gauges the renormalization 
scheme dependence of the v e v s  is particularly clear: the definition of vn  depends on 
one more renormalization condition imposed on ~v. 

One particular way of solving Eq.(*) is to impose the conditions 

--0 

(.**) 

0 
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l'hen, the tree level relation between the renormalized parameters and the vevs is 
preserved at the l-loop level. In the Landau gauge the tadpole counterterm is expressed 
in terms of ~m and &k, so imposing Eq. (**) means fixing one of the renormalization 
conditions for those parameters (in the minimal substraction scheme Eq. (**) can 
be satisfied by properly adjusting the renormalization scale). In the Re gauges we 
have additional freedom of fixing ~v. In ref. [16] we have chosen the ~v~s to cancell 
only this contribution to tadpoles which appear when we change from the Lorentz to 
R~ gauges. More precisely we do it for infinite parts of tadpoles only (to avoid the 
spurious infrared divergences which such procedure introduces for the finite parts). 
The remaining parts of tadpoles are cancelled, as in the Landau gauge, by properly 
adjusting 8mls. Our renormalized tan/3 is effectively very close to the tan/3 defined in 
ref. [13]. The renormalization schemes of ref. [13] and [16] can be contrasted with that 
of ref. [15] where ~vl are used to cancell the full tadpole contributions. Our choice of 
renormalization conditions has the virtue of absorbing large finite tadpole contributions 
into Higgs boson renormalization constants without affecting other sectors such as 
fermion, chargino and neutralino mass renormalization with large, finite 6vis. 

6 The  M S S M  Higgs sector after radiat ive 
correct ions and LEP p h e n o m e n o l o g y  

In this Section we present the main results obtained in ref. [12-17] and their implications 
for the LEP phenomenology. Qualitatively, all the papers reach similar conclusions. 
Here we first follow the most complete analysis of ref. [16] for the Higgs boson masses 
and then show some results for the cross sections obtained in the effective potential 
and RG approaches. Both sets of parameters (tan/3, MA) and (Mh, MA) are used coln- 
plementarily to present the results. Finally, we address the question: are the minimal 
SM Higgs boson and the lightest MSSM Higgs boson distinguishable experimentally? 

As sMd earlier, there is the "theoretically suggested" plausible region of tan/3 which 
is of particular interest for the MSSM: 1/2 < tan/3 < mr~rob. The lower limit comes 
from constraints on the tree level Yukawa couplings [8], the upper limit - from the 
mechanism of the radiative SU(2) x U(1) symmetry breaking. It was stressed in the 
previous Section that at the l-loop level tan/3 is renormalization scheme dependent. 
However, the particular choice of the scheme in ref. [16] is such that a) large corrections 
are absorbed into Higgs boson renormalization constants and the Yukawa vertices re- 
ceive only generic electroweak corrections - hence the tree level lower limit for tan/3 can 
be used as a sensible constraint for the renormalized tan/3 of ref. [16]; b) our tan/3 is 
effectively very close to the one used in the effective potential approach to the radiative 
SU(2) × U(1) symmetry breaking - hence we can use the upper limit as well. 

Let us address, therefore, the question: how does the Higgs sector look like for 
the plausible values of our renormalized tan/3 : 1/2 < tan/3 < mr~rob? The first 
important result is the upper limit for the lightest scalar h (i.e. violation of the tree 
level result(l)) as a function of the top quark mass. This is shown in Fig. 7. We see 
that the lightest Higgs boson may be beyond the reach of LEP II. Let us also note that 
the lower limit for tan/3 is crucial for obtaining those results: because of the growing 
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Yukawa top quark coupling, for tan/3 ~ 0 the l-loop corrected Mh ~ ec (eventually, 
perturbation theory breaks down). 

For a more detailed presentation, it is useful to discuss our results for the neutral 
Higgs boson masses separately for tanf l  < 1, intermediate tan/3, say, 1 < tan/3 < 5 
and large tan fl. For, say, tan/3 > 5 the tree level pattern of masses is basically 
preserved with positive corrections of similar magnitude to MH for MA < 100 GcV 
and to Mh for MA > 100 GeV (Fig.l). They are typically of the order of 0(10 GeV) 
for mt = 120 GeV and 0(20 - 30 GeV) for rnt = 160 GeV. They grow like fourth 
power of mr, logarithmically with M~q and A,q and are almost independent of # (in 
this region of tan fl the mass splitting in the stop sector is sensitive to A~q and not to #; 
M~g, #, As~(,0 are the soft squark mass parameter (taken the same for all squarks), the 
supersymmetric Higgs boson mixing parameter and the trilinear coupling for squarks 
(sleptons), respectively).The structure of corrections is easily understood by the fact 
that  the top quark couples only to //2 and H2 is almost pure H(h) for MA < (> 
) 100 GeV. We notice in particular that,  as at the tree level, both masses are almost 
independent of tan fl (for tan fl > 5) and in addition they almost do not depend on MA: 
MH for MA < 100 GeV and Mh for MA > 100 GeV. Nice thing about the corrections 
is that  for this region of tan/3 they lift the mass degeneracy of the Higgs boson with 
the Z boson. The region tan fl > 5 and MA < 100 GeV can be accessed experimentally 
as before: there Mh " MA and the coupling ZhA is large. 

In the intermediate tan fl region the corrections modify the tree level structure quite 
drastically, in particular in the (Mh, MA) sector. In general, they are bigger than for 
large tan fl both for MH and Mh (proportional to m~ sin a~ sin 2/3 and mt 4 cos a~ sin 2 fl 
respectively, with a = 0(2)). For MA < 40 -- 60 GeV the mass Mh is pushed well 
above its tree level limit Mh < MA and increases with decreasing tan/3. For instance, 
for tan fl = 1 and m t =  120(160) GaY (with Msq = 1 TeV, Asq = As~ = 0, # = 70 GeV) 
we have Mh ~ 36(52) GeV, respectively, at MA = O. An interesting feature is that 
for tan/3 close to 1 the l-loop corrections to Mh are ahnost independent of MA for 
arbitrary values of the pseudoscalar mass. Thus, the tree level value Mh ~ 0 (also 
independent of MA) is just pushed up remaining, however, for MA > 100 -- 120 GeV 
the lower limit for Mh. For very large squark mixing (A~q and/or # larger than M~q) 
the l-loop corrections to Mh begin to decrease for light MA and eventually become 
negative. 

For tan/3 < 1 corrections to Mh and MH are very large even for mt as small 
as 100 GeV (as expected because of the growing Yukawa coupling). The mass MH 
grows by 0(100 GeV) for MA < Mz and the corrections to Mh depend on MA in such 
a way that the final result (tree level plus l-loop correction) is (as for tan/3 "~ 1) 
almost independent of MA for any fixed tan/3 in the whole range ½ < tan/3 < 1 
(the MA dependence grows with mt > 200 GeV) and the symmetry with the region 
1 < tan fl < 2 is clearly broken. Thus, even for MA = 0 the mass Mh may be easily as 
large as 80-100 GeV and therefore unreachable at LEP. 

For a representative choice of parameters, the bounds on MH and on Mh as flmctions 
of MA with contour lines of fixed tan/3 and on Mh as function of tan/3 with contour 
lines of fixed MA are shown in Fig. 2,3 and 4, respectively. In particular Fig.4 shows 
clearly the discussed above very weak dependence of Mh on MA for tan fl < 1 (MA has 
been varied from 0 to 1 TeV) and, in consequence, the breakdown of the symmetry 
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with the region tan/3 > 1. Note, however, that the symmetry is largly restored if 
restricting MA to MA > 100 GeV, i.e. for tan fl > 1 clear dependence of Mh on MA is 
present only for MA < 100 GeV. Note also that the tan/3 < 1 region is quite sensitive 
to large values of # (Fig.4b). 

Finally, let us discuss the charged Higgs boson mass. Here, the corrections to the 
tree level result are small for 1 < tan/3 < 10 and rapidly become sizably negative 
(positive) for tan/3 < l(tan/3 > 10). This is shown in Fig.5. Particularly interesting 
feature is the strong dependence of M + on the # parameter for tan/3 < 1 (with very 
similar results for # < 0). It can be traced back to the quadratic (and not just 
logarithmic) dependence of AM + on the stop-sbottom mass splitting which in turn 
is for tan/3 < 1 very sensitive to the value of #. Large negative correction to M + 
for large # and tan/3 < 1 offer an interesting possibility to rule out this region by 
experimental limits on M +, at least for light (< 50 GeV)MA. The region of tan/3 < 1 
and small # can be on the other hand ruled out by limits on the light chargino mass. 
The combination of those two effects is illustrated in Fig.6 where we plot the M + and 
the ehargino mass as functions of #, for tan/3 = .5. The chargino mass is the tree level 
chargino mass but within our renormalization scheme (tadpoles absorbed by Higgs 
boson counterterms) the radiative corrections to the chargino mass are expected to be 
small. We also recall that for tan/3 fixed in the region tan/3 < 1 (we always refer to 
tan/3 in our renormalization scheme) and for small # the theoretical limits on Mh are 
narrow enough (Fig.4) to make the experimental search at least well defined. 

The results for the Higgs boson masses presented here are consistent with similar 
results obtained in the effective potential [13] and RG [17] approaches. This is illus- 
trated in Fig.8 where some of the results obtained by the RG evolution [17] are shown. 
In general, the RG approach is very good for A~q ~ # ,.~ 0 (small mass splitting in the 
squark sector) and for Mg~ ,~ M~q (all sparticles are decoupled at the same scale M). 
On the other hand, the gaugino contribution has been neglected in the effective poten- 
tial calculation [13] (this corresponds to setting the SU(2) × U(1) gaugino masses to 
zero). The detailed comparison of the results obtained by the three methods shows how 
the complete calculation [16] interpolates between the two other methods for different 
sets of parameters. 

Let us turn now to the cross sections for the Higgs boson production at LEP. The 
complete l-loop calculation will be soon ready [17] and at present we can discuss only 
the effective potential [13,14] and the RG [17] results. Still, encouraged by the results 
for the masses one may expect them to be quite accurate. In both methods the cross 
sections are calculated in the tree approximation, with angles and masses obtained in 
the effective theories. So, the relations between the Higgs boson masses and the angles 
a and/3 which appear in the Higgs boson couplings to the Z boson and to fermions 
are different from the tree approximation in the MSSM. In addition there are obvious 
(and large) changes in kinematics of the reactions (induced by the large corrections 
to masses). In Fig.10-15 we show cross sections for the reactions e+e - --, Zh and 
e+e - ~ hA at x/~ = 180 GeV. They are presented as functions of the (tan/3, MA), 
and (Mh, MA) parameters, to illustrate complementarity of those choices. It is, in fact, 
interesting to see how different projections of the same results fit each other and reflect 
the pattern of the corrected mass spectrum. 
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Let us concentrate on Fig.12-14 where the cross sections are plotted as functions 
of Mh with contour lines of constant MA. First of all, we note the discussed earlier 
two-fold ambiguity of this parametrization: in some cases the same (Mh, MA) give 
two different values for the cross sections. Of course, they correspond to two different 
values of tan fl or, in terms of physical observables, to two different Higgs boson widths 
and branching ratios (Fig.16). The cross sections are such that for a not too large MA 
(<50-  60 GeV) the two reactions are complementary: for light h (i.e. large tan fl) the 
e+e - ---* hA dominates, for heavier h(i.e, smaller tan fl) the e+e - ~ Zh dominates. 
For heavier A, the first reaction is kinematically forbidden and the second one has 
reasonable cross sections only for light h (i.e. small tan fl). 

It is very interesting to compare the cross sections a(e+e - ~ Zh) with cross sections 
for the minimal SM Higgs boson production (dashed-dotted lines in Fig.12,13). We see 
that, as in the tree approximation (Fig.9), they are very close to each other in most of 
the parameter space and, in addition, the process a+e - --~ Ah is then unrealistically 
weak. The only exception is the "large tan fl" branch for MA < A4z. This region 
is, however, already excluded in its large part by data analysis (combined search for 
e+e - ~ Zh and e+e - --~ Ah). In some parts of the "similar" regions one may still 
hope to distinguish the MSSM and the SM scalars by their branching ratios into various 
channels. For small MA the decay h ---* AA may be sizable (Fig.15) and for larger MA 
the branching ratios into fermions remain different (Fig.16). In general, however, the 
heavier the pseudoscalar A the harder is the task of distinguishing the supersymmetric 
h from the minimal SM Higgs bosom 

Finally, the RG calculation is compared in Fig.12-14 with the effective potential ap- 
proach. It turns out that the difference is mainly due to the gaugino contribution which 
is neglected in ref.[13] and effectively included in the RG calculation (with Mg~ ,-~ M). 
Indeed, the difference is sizably reduced by using the RG equations of ref.[20]. (Those 
equations can be used to decouple gauginos at any chosen Mgau. ). 

To summarize this Section: radiative corrections are very important for phenomenol- 
ogy of the supersymmetric Higgs boson search. They introduce quite large a depen- 
dence On the number of unknown parameters such as the top quark mass, squark 
masses etc. By far the most important for phenomenology are corrections to Higgs 
boson masses. And more optimistically: systematic search in the plane (Mh,MA) is 
still possible. However, once a scalar is discovered it may be difficult to distinguish 
between the supersymmetric h and the minimal SM Higgs bosom 

7 Summary: where is the lightest supersymmetric 
Higgs boson ? 

In this lecture an overview has been given on the subject of the MSSM Higgs sector after 
radiative corrections and on its links to several other crucial questions. For technical 
details we purposely refer the reader to the original papers. 

Let us now have some fun and make a "plausible" guess in what mass range is 
actually placed the lightest supersymmetric Higgs scalar. It is likely that 



241 

1. the scale of the soft supersymmetry breaking is, say, between 0.5 T e V  - 1.5 TeV; 

2. the top quark mass is in the range 120 GeV - 160 GeV; 

3. the naturalness arguments of Section 3 are correct and the MA is of the order of 
the soft supersymmetry breaking scale i.e. MA >> M z  

4. renormalized tan fl in "sensible" renormalization schemes is relatively large, say, 
tan/~. > 5. 

By inspection of Fig.1 and of similar ones for m t =  120 GeV and for other values of 
the parameters Msq, Asq, # one concludes that 100 GeV < Mh < 120 GeV. 
Of course, such speculations do not free us from the duty of excluding experimentally 
the lower mass region. BUT, LET'S BE PATIENT. 
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FIGURE CAPTIONS 

1. Masses Ma and MH as functions of MA for tan fl = 5 and tan fl = 25. Parameters 
not specified in the pannel are M~t = 300 GeV and Mga~ = 400 GeV. 

2. Bounds on Mr1 as function of MA with contour lines of fixed tan ft. M~l and Mga~ 
as in Fig. 1. A = M~! means A,q = M,q, A~t = M~l. 

3. Bounds on Mh as function of MA with contour lines of fixed tan f~. Parameters 
not specified in the pannel are as in Fig. 2. 

4. Bounds on Ma as function of tan fl with contour lines of fixed MA. Parameters 
not specified in the pannel are: M~t = 150 GeV, Mg~ = 200 GeV. 

5. Bounds on the charged Higgs boson mass as function of MA with contour lines of 
fixed tan ft. Dashed lines correspond (from below) to tan fl = .75,1,1.4,5,10,20, 
respectively. Parameters not specified in the pannel are as in Fig. 2. Dotted line 
is the tree level result. 

6. M + as function of # for several values of MA. Slepton and gaugino masses are 
150 GeV and 200 GeV, respectively, for Msq = 500 GeV; and 300 GeV and 400 
GeV for Msq -- 1000 GeV. Dotted lines show the mass of the lighter chargino. 

7. Upper limit for Mh as function of the top quark mass and for 1/2 < tanf l  < 
~' t  t / ~Tt b . 

8. Bounds on Ma as function of M~ with contour lines of fixed tan ~ obtained in 
the RG approach of ref.[17]. Comparison with Fig.3 illustrates the accuracy of 
the method. The agreement with the complete 1-loop calculation is even better  
when Am # ~ 0 and Ma~ ~ Ms~sg. 

9. Tree level results for the cross section a(e+e - -~ Zh) as function of Ma with 
contour lines of fixed MA. Each line represents two branches: tan fl < 1 and 
tan fl > 1 corresponding to the same values of (Mh, MA) and degenerate at the 
tree level. The arrow indicates the direction of departure fl'om tan fl = 1. The 
dashed lines represent the cross section for the SM Higgs boson production. 

10. Cross sections for the production of the light scalar h in the e+e - collisions at 
V~ = 180 GeV as functions of MA with contour lines of fixed tan fl, obtained in 
the RG approach [17] described in Section 4. 

11. The same as in Fig. 10 but in the effective potential approach of ref.[13]. In this 
case Ms~sy - M~q.The parameters A and # are taken to be zero. 

12. Cross sections for e+e - --~ Zh as functions of M~ with contour lines of fixed M~. 
The arrow indicates the direction of growing tan fl (from 1/2 to m.t/rnb). Solid 
lines: RG results of ref.[17]. Dashed lines: effective potential results of ref.[13] 
with parameters as in Fig . l l .  Dashed-dotted line: cross section for the SM Higgs 
scalar production. The curves for MA > 110 GeV (not plotted) are inside the 
respective curves for MA = 110 GeV. 
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13. Cross sections for e+e - ~ Zh as functions of Mh with contour lines of fixed MA, 
obtained in the RG approach of ref.[1,7]. The arrow indicates the direction of 
growing tan/3.Dashed line: cross section for the SM Higgs scalar production. 

14. Cross sections for e+e - ~ Ah plotted as in Fig. 12. 

15. Results for the decay h ~ AA  obtained in the RG approach of ref.[17]. Contour 
lines are for fixed tan/3. 

16. Decay widths of the scalar h after radiative corrections. 
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A b s t r a c t  

In the minimal supersymmetric model (MSSM), the Higgs self-interactions a r e  

related to the SUL(2) x Uy(1) gauge couplings. These relations impose an upper 

limit on the mass of the lightest Higgs boson of the model. When one-loop radiative 

corrections to this limit are included, one finds that the corrections are large and 

grow logarithmically with the supersymmetry breaking scale. Renormalization 

group techniques are employed in order to sum the leading log radiative corrections 

to all orders, and the result is that mho -- mz  converges to an infrared fixed point. 

However, due to the mt 4 behavior of the dominant term, the radiative corrections 

can still lift the upper bound on the lightest Higgs mass above the reach of LEP-200. 

The radiatively corrected upper bound for raho as a function of mt is presented. 

1. Introduction 

In recent years supersymmetric theories have received a lot of attention. In 

these theories, quadratic divergences in unrenormalized Green functions are au- 

tomatically cancelled by adding a bosonic (fermionic) partner to every fermion 

(boson) with the same quantum numbers and imposing supersymmetry (SUSY) 

on the resulting Lagrangian. This might hold the key to the solution of the hierar- 

chy problem [1] one of the most fundamentalpuzzles of the Standard Model (SM). 

In building a supersymmetric extension of the SM, we also need at least two Higgs 
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doublets H i [n = 1, 2; i is the SUL(2)-index] in order to give masses to up- and 

down-type fermions. Following these steps we arrive at the minimal supersymmet- 

ric model (MSSM) [2]. In this model neither the gauge symmetry nor SUSY is 

broken spontaneously. To construct a realistic theory, one must assume that the 

MSSM is only the low energy part of a more complete theory and that SUSY is 

broken in a different sector. This will generate the following soft SUSY-breaking 

mass terms for the effective low energy theory ['qL -- ('~L, dz), generation labels 

will be suppressed]: 

H 2rri**Ti 2 j ,  i 2 .. i i H.c.) Vsoft  = r o l l / 1  .t/1 + m 2 ( H  ~ H~) - ( m l 2 ¢ t a n l H ~  + 

M qLqL + + M d. R 

1 a,r .a...a 1 , .  7~xra~xra }M1BB + S.c. "Vsot" t = ~lv~3g g + ~1v12 v v  v v  + 

(1.1) 

(~', W and B are the gauginos for the SUe(3), SUL(2) and Uy(1) symmetry groups, 

respectively). With the soft terms the SU(2)L × U(1)y symmetry can be broken 

spontaneously and the masses of the superpartners can be pushed above the cur- 

rent experimental bounds. In addition the following soft interaction terms for the 

squarks are generated: 

l)Qt • • N = h g A v e i j H ~ u R  + hDADeijH~Ldlz  + H.c.. (1.2) 

The subscript U (D) corresponds to the up- (down-) type squarks.. For the sleptons, 

the definitions are similar, except that there is no YR. The A-parameters and the 

squark mass parameters are in general arbitrary 3 x 3 matrices. However, in this 

talk I will confine myself to the special case where they are proportional to the 

unit matrix. This leaves only five free parameters: Au,  AD, M~,  M D and M~. 

After electroweak symmetry breaking there remain five physical Higgs particles: 

two CP-even scalars (H ° and h °, with mho <_ mHo), one CP-odd scalar (A °) and a 

charged Higgs pair (H=k). The vacuum expectation values (VEV) of the two neutral 

Higgs fields are denoted by Vl and v2. Due to its minimal particle content the Higgs 

sector of the MSSM is well-constrained and thus allows some phenomenologically 

interesting predictions [3]. For example, the mass of the lightest Higgs scalar is 
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the theory. 

given by the tree-level relation: 

2 [  ] mh0 = ½ rn~0 + m ~ - - ~ / ( m ~ 0 - - m ~ )  2 + 4 m 2 0 m ~  sin2 2fl (1.3) 

where tanfl ~ v2/vl .  In particular, h ° must be lighter than the Z-boson. This 

prediction, however, is based on SUSY and need not be satisfied below the SUSY- 

breaking scale ( M s u s Y )  set by the parameters in eq. (1.1). It has recently been 

shown that  the upper bound of rnho increases considerably when radiative correc- 

tions are included [4-6]. The goal of this talk is to present the one-loop corrections 

to the light Higgs mass bound and to improve the result by using renormalization 

group equation (RGE) techniques. This talk is based on work done in collaboration 

with Howard Haber [4,7]. 

2. Higgs Mass Shift at One-Loop 

We see from eq. (1.3) that  a prediction of mho requires at least three experi- 

mental inputs at tree-level. However, the maximum value of mh0 depends only on 
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Fig. 2. Possible radiative mechanisms for generating down-type quark masses. 

m z .  Therefore,  it is clear tha t  the one-loop correction to the upper  bound  of mho 

will only require the  renormalizat ion of m z  and not of any other  quant i ty  such as fl 

or mAo. In fig. 1, we have plot ted  the tree-level predict ion of mho vs. fl (solid line). 

The  funct ion has a m a x i m u m  at fl~a,. The  value of the m a x i m u m  mass and f l~a,  

are independent  of raAo (actually, in fig. 1, mAo is taken to infinity). The  dashed 

line is a schematic  plot of the one-loop radiatively corrected Higgs mass. We antici- 

pate  tha t  this graph will have a m a x i m u m  at fl~ax close to the  tree-level m a x i m u m  

[that means  fl~ax _ fl~,,,,x O(g~), where g2 is the weak coupling constant].  In 

these plots mho is defined as the  pole of the propagator  and is thus a renormalized 

physical quantity. The  angle fl is renormMized but  it is not directly an observable. 

Rather  it is defined through some scheme as an in termedia te  quant i ty  which has no 

direct physical meaning.  T h i s  means tha t  the place of the  m a x i m u m  will in general 

depend  upon  the  scheme. However, the value of mh0 at the  m a x i m u m  is scheme 

independent .  This  is the  quant i ty  we are interested in. Now we would like to argue 

that  within a first order approximat ion it is not necessary to find f l~a,  in order 

to find the  m a x i m u m  Higgs mass. This  is because the  derivative at the m a x i m u m  

vanishes and thus mho(fl~ nax) = mho(fl~ ha*) to first order in per tu rba t ion  theory. 

We thus need to consider the case of the tree-level max imum.  To achieve this, we 

mus t  take either fl = ~'/2 or fl = 0 ( that  is either Vl = 0 or v2 = 0, respectively). 

Notice tha t  the lat ter  case cannot be even approximately  correct because of the 

heavy top quark. On the other  hand,  fl = ~r/2 is plausible since all the down-type 

quarks are light enough to be generated radiatively (see fig. 2). In fact the large 

value of m t / m  b suggests tha t  this scenario might  be realized in nature.  In ref. 4 

we imposed an extra  U(1) symmet ry  that  guarant ied tha t  f l ~ *  = f l ~ * .  However, 

this s y m m e t r y  required implicit ly tha t  # = 0 and is thus not completely general. 

We will nov," investigate the case of fl = ~r/2. It is obta ined by set t ing m12, 
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as defined in e% (1.1), to zero. In this model, the tree-level Higgs mass spectrum 

consists of mho = m z ,  mlto = m A  o > m z ,  and mit+ = (mr2v + m~0) 1/2. [Had 

we chosen mAo < m z ,  then we would have found m h  o = m A  o, and m l I  o = m z  

(at tree-level), which is not of interest to us here.] Now we proceed to compute 

corrections to the value of mho. We will derive an expression for: 

Am~o = m ~ o -  m ~ .  (2.1) 

There are two types of corrections that we will compute here. The first consists 

of the one-loop radiative corrections to the model specified above. This will be 

denoted by (ArnZho)Z=~r/2. The second correction is due to RGE improvement. 

This shift is calculated numerically and will be denoted by (Am~0) I Thus, RG MP" 
the final result for the squared mass shift is: 

2 = + (2.2) 

We now turn to the computation of (Am~0)#=r/2. The full potential of the model 

is: 

i ,  i 2 i ,  i j* j i ,  i [2 "P =)q( t I~*H~)  2 + )~2(U 2 H~) + $3(H 1 H 1 ) ( H  ~ tI~)  + ,k4 [ Z 1 H~ + 
~ri* rrJ~ g (2.3) 

/~ 12 (tI~*H~ + "~'2 "-'2J + Vsof t ,  

where 

A1 ~_. A2 _21A3 1 2 = = ~[.2 + g~] 
1 2 ( 2 . 4 )  

• "~4 = ~g2" 

The relevant terms in our case will be the ones involving only the shifted neutral 

component of the second doublet/ /2 -+ h ° / v ~  + v: 

I ~ 2  ( ~.0,~2 •h ° = thO + ~'"hOk '" ) + O [ ( h ° )  3] 

v z  = ½ m ~ z , , z . ,  
(2.5) 

where 

m ~  1 2 = ~(g~ + g ~ ) ~  (2.6) 
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Fig.  3. The definitions of the self-energies for Higgs bosons and gauge bosons. 

, =  + (2.7) 

rn~0 = 6A2v 2 + m 2.  (2.8) 

The mass parameter  is defined as m 2 = m 2 + #2. If we eliminate (g~ + g])v 2 and 

m in favor of m }  and t, respectively, and use the boundary condition [eq. (2.4)] 

we end up with the following relation: 

g2 
m2 o = m2z + 2row t ,  (2.9) 

where we have used m w  = g2v/v/2. Remember that  mh0 and m z  are still unrenor- 

malized parameters. The standard procedure at this point is to rewrite the bare 

parameters as renormalized parameters plus counterterms. The only requirements 

for these separations are that  the renormalized parameters are finite and the coun- 

terterms are of 0(g22). Otherwise they are completely arbitrary. We avoid this 

step by expressing the bare quantities directly in terms of physical observables. 

These are the masses of h ° and Z (indicated below with a subscript P)  which are 

identified in the usual way as the poles in the corresponding propagators: 

m2zp = m~ + Re Azz (m2z) ,  (2.10) 

2 2 rn~op mho + Re = Ahoho(mho ) . (2.11) 

Here the self-energies are defined in the standard fashion (see fig. 3). We now 

demand that  v is the true VEV at one-loop. This means that  "the unphysicM 

one-point functions (tadpoles) corresponding to a Higgs field disappearing into the 
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vacuum are absent. This reads t + Aho(O) = 0, where --iAho(O) is the sum of all 

one-loop Feynman graphs contributing to the h ° one-point function (see fig. 3). 

We find this choice convenient, since there will be no tadpole contributions to the 

calculation of Azz  and AhohO. Using eq. (2.9) we arrive at our first main result: 

- -  - = R e  [ A h o h o ( m $ )  - A h o ( O ) .  
2mw 

(2.12) 
This is the mass shift due to one-loop radiative corrections. The error we make 

by evaluating the Higgs self-energy at mz instead of rnh0 is of second order in 

the perturbation series. Although our result has been derived using a specific 

convention for the shift v, it is easy to see that  we could have expanded about 

any other point within O(g~) of the tree-level minimum. For example, another 

possible convention would be to simply define t = 0. (In this case v would not be 

the true VEV, but this does not matter.)  Then one would obtain: (Am~o)~=,~/2 = 

Re [Ah0h0(m})--Azz(m2z)]. However, one would have to include the tadpole 

contributions to both AhohO and AZZ. It is a simple exercise to check that  these 

additional terms simply reproduce the term -(g2/2mw)Aho(O) in eq. (2.12). 

3 .  N u m e r i c a l  R e s u l t s  

We now turn to the numerical evaluation of the h ° mass shift. Note  that  

the contribution of each particle appearing in the self-energy loops to eq. (2.12) 

is separately divergent and depends on an arbitrary scale. The divergences and 

scale dependence will cancel only when one sums over a complete supersymmetric 

multiplet. This is true because mho is calculable only in the supersymmetric model. 

In the SM the self-coupling constant A is arbitrary and therefore the Higgs mass 

is an infinitely renormalized free parameter of the theory. 

The one-loop correction can be split into a gauge-gaugino-Higgs-Higgsino sector 

and a quark-squark (slepton-lepton) sector which are separately finite. We shall 

first discuss the latter one since it gives the dominant contribution to the Higgs mass 

shift. As we argued above, there will be a cancellation of divergences generated 

by the quarks and their superpartners. Terms proportional to ln(M~vsy/m2z) are 

remnants of the cancellation. Here, we simply quote the leading log approximation 
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Fig. 4. Higgs mass shift Amho ~ m h o  - -  m z  due to one-loop radiative corrections. The 
solid line denotes the full one-loop result due to three generations of quarks, leptons 
and their superpartners. The dashed line corresponds to the leading log approximation 
given in eq. (3.1). All the mass parameters are set equal to the common SUSY scale, 
M s u s Y .  

to our exact formulas, where we summed over six flavors of quarks/squarks and 

leptons/sleptons: 

+ ln (M~-- - s r .~  [~(1 s 2 3 2 4 ,  - ~ s w  + y s w )  + ½ (1 _ ~s w 4  2 + .~sw)8 4 
\ m z  / 

(3.1) 
where s w  --= sin 0W. Here, we have assumed that all the soft squark mass param- 

eters in eq. (1.1) are of order M s u S Y .  The most dramatic aspect of this result is 

the rn~ growth, which arises due to the top quark/squark loops. In fig. 4 we have 

plotted the mass shift Arnho -- mh0 -- mz  as function of the top-quark mass. The 
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Fig. 5. Higgs mass shift Amho due to one-loop radiative corrections. The solid, dashed 
and dotted lines denote the full corrections due to three generations of quarks, leptons 
and their superpartners for a top quark mass ofrn~ = 150, 200 and 250 GeV, respectively. 
The common SUSY scale Msvsr is 1 TeV. 

solid (dashed) line is the exact one-loop result (leading log approximation).  All the 

squark mass parameters  are set to 1 TeV. The A-parameters  and ju are set to zero 

(that is there is no qL-q'/~ -mixing). In fig. 5 we plot the  mass shift as a function of 

the ratio r~ - ME/M ~ while taking (M~ + M 2) = 2M2gsy and My = MsusY. 

The graphs show a maximum at r~  = 1 for all top quark masses considered. 

Another important  contribution to our exact result derives from the soft inter- 
N 

action terms Yi~t [eq. (1.2)] and the following F-terms: 

= hD#H 1 qzuR - hu#H~ qLdR + H.c..  (3.2) 

It is clear that  contributions from these terms are not enhanced by a logarithm 

since they only come from the squark-sector. This becomes obvious in the  down- 

squark sector since the down-type quarks do not contr ibute to the Higgs self-energy 

at all when vl = 0. After electroweak symmet ry  breaking these trilinear terms will 
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generate mass terms that mix the left- and right-handed squarks in addition to the 

mz/i~.sr. interaction terms. It is convenient to expand the result in powers of 2 2 

To leading order the mass shift due to squark mixing is: 

( a ~ o ) .  = 

v2 X-' N. ( auA~ buA~ "~ 
c ~x-7i'---- + 2 32~2 u \M~usY M ~ u s r ] '  

32~'2 D \M~3usY "{- M~USY~ ] ' 

(3.3) 

( m z / M ~ v s y )  since they are completely where we have dropped terms of order 2 2 

negligable for M s u s Y  > 1 TeV. The number of color degrees of freedom is Nc = 

3 (1) for squarks (sleptons). In the special case of M s u s Y  = Mff = M~, ~ M b we 

find: 
2 4 4 2 2 ~ . ( 6 ~ .  g~ g~), au = -~h U, bt] = - - ' (3.4) 
2h 4 bu 2-2 : 2 = ~,~gx + g~) aD = --~ D' 

In our model the up-type Yukawa coupling is hu = g 2 m u / ( v ~ m w ) .  The down- 

type Yukawa coupling hn is a free parameter since we have argued that the down- 

type quark masses is generated radiatively. Clearly the contributions of the first 

two generations are negligible. In the case of the top-quark, the squared mass shift 

increases initially with AU. It reaches its maximum for 2 2 Au / M ~ = - b u  / ( 2at] ) = 

6 - (g2 + s2:/"2~/h2u" Analogously for the bottom quark the maximum is at #2/M~ = 
*" " 2 x m a x  (g2 +g~)/(2h2D). The maximum shifts ~Amho)Q (Q = V,D)  due to the trilinear 

terms of the up- and down-type squarks become: 

[ , ' ,  2 "l m a x  3Ncg2rng : ^  2 ,~max,  ~ ' c y 2  Z 

- -  J ' I , z . A m h O ) D  96~-2 C~V v.m,,o:. S ~ c ~  \ ~  ~ = . (3.5) 

This approximation plus the leading log approximation [eq. (3.1)] lies within a few 

GeV of the full one-loop calculation plotted in fig. 6. 

We now turn to the discussion of the gauge-gangino-Higgs-Higgsino sector. 

This sector depends only on four free parameters: the mass of the CP-odd scalar 

raAo the Higgsino mass parameter # and the Majorana masses Mk (k = 1, 2) for 

the U(1)y and SUL(2) gauginos respectively. The parameter freedom is reduced 
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Fig. 6. The one-loop corrections to Amao as a function of the A-parameter. The solid, 
dotted, dashed and dot-dashed curves denote the full one-loop corrections due to three 
generations of quarks, leptons and their superpartners for MsusY = M~ = MU = 
M~ = 10 3, 10 4, 10 5 and 10 6 GeV, respectively. 

further if we assume that  our model is imbedded in a grand unified theory (GUT).  

Then the gaugino mass parameters  are related according to: 

MI/M2 = 5 tan2Ow/3. (3.~) 

We would like to display the logarithmic dependence on the scale as well as the 

behavior of the mass shift for large ratios of the mass parameters.  Therefore we 

parameterize this sector by the CP-odd Higgs mass mAo , the average mass of the 

charginos and neutralinos ~ - (4~ 2 + 3M~ + M?)/8 ,  and the ratio r£ - #/M.~. 

The leading logarithms are: 

- ( 5 -  + 

] 
- ( 1 -  2~ + 24v)ln J, 

\-~zY J 

(3.7) 
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Fig. 7. The one-loop radiative corrections to Amho due to the gauge-gaugino-Higgs- 
Higgsino sector as a function of M~ [M¼ --- (4/~ 2 + 3M~ + M~)/8] for r~ =. #/M2 = 1. 

where cw -= cos Ow. In fig. 7 we have plotted mho as a function of M~ (solid line). 

Clearly, the contribution from the gauge-gaugino-Higgs-Higgsino sector is relatively 

small and negative. The leading logs (dashed line) are again the dominant terms. 

In the case r~ = 1, this approximation differs from the exact one-loop result only by 

1 GeV over the entire range of M~. Fig. 8 displays the dependence of the mass shift 

on the ratio r~. Here we have subtracted the leading logs. We see that  the full one- 

loop radiative correction never differs from the leading log approximation by much 

more than 1 GeV as long as M~- < 1 TeV. Moreover, note that  the contribution 

of the Higgs sector [second term in eq. (3.7)] is positive but very small and never 

exceeds a few GeV . 

In this section we have seen that  the one-loop radiative corrections can become 

very large. For a top quark mass mt > 175 GeV the corrections become larger than 

the tree-level result. It is therefore necessary to find a criterion for the validity of 

our perturbation expansion. By comparing the one-loop result with the largest 

possible contribution to the 2-loop correction [see also ref. 8] we find: 
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Nc,,2m ~ t I n  
16r2m~v 

• 2 M usr < 1 (3.8) 

or m t <  6 m w  (for M6 < 1 TeV). However, if we were to allow M s u s Y  >> 1 TeV 

then the Validity of our result would already be suspect for much smaller values of 

mr. We therefore shall sum the leading logs to all orders using the technology of 

the renormalization group equations. 

4 .  R e n o r m a l i z a t i o n  G r o u p  I m p r o v e m e n t  

We have seen that  in MSSM the Higgs self-coupling constant  and the gauge 

coupling constants  are related [eq. (2.4)]. However, the parameters  of any theory 

will in general depend on the energy scale (v  ~)  at which they are evaluated. This 

dependence is described by the renormalization group equations (I~GE): 

d 
"~Pi = fli(Pl,P2,..), where pi = g](j  = 1 ,2 ,3) ,h~,Ak(k  = 1,..,4), .... (4.1) 
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Here t --In(s) ,  the Yukawa couplings are h I =. g2mf/(x/~mw) and gj (j = 3,2,1) 

are the gauge couplings of the SUc(3) x SU£(2) x Uy(1) gauge groups. Consider 

first the case of an unbroken supersymmetric theory. The fact that eq. (2.4) is true 

for arbitrary s !mplies that the fl-functions have to satisfy analogous equations: 

B~, 1 (4.2) 
= 

These B-functions obtain contributions from all the particles of the theory that 

are present at the scale v/s. If soft SUSY breaking terms are included, then the 

particles and their superpartners will no longer be mass-degenerate. As a result 

the B-functions at a scale below MsusY will no longer satisfy eq. (4.2) and the 

gauge coupling constants and the self-coupling constant will evolve differently. In 

principle, all SUe(3) x SUL(2) x Uy(1) multiplets could lie at a different mass 

scale (above the weak scale the members of these multiplets are mass-degenerate). 

As v/s decreases one would have to modify the B-functions every t ime a new 

multiplet disappears. However, we shall only discuss two possible scenarios that 

are particularly interesting. Probably the most natural scenario is the one where 

all the soft SUSY mass parameters are of the order of Msusy. In this case only the 

SM particles are present at the weak scale. The B-functions are then well-known 

[9]. This case has already been investigated in ref. 10. We are more interested 

in the scenario that yields the maximum Higgs mass. This limit is achieved by 

making all the bosons (fermions) as heavy (light) as possible with the exception 

of the top-quark, where the quartic increase with the Yukawa-coupling dominates 

over the logarithmic decrease with mr. Our low energy theory will then consist of 

the SM particles plus gauginos ( ~ a ~ )  and Higgsinos (H1, H2). To arrange this, 

we require that the gaugino masses Mk (k = 1,2) and the supersymmetric Higgsino 

mass parameter p are all of order the weak scale. The additional interaction terms 

a r e :  

A/~ = i~2 ,,.;';-;ra~i ~j* ig lX. .B~i  rrJ* (4.3) Vv + x / . f f , j , _ , . 2 .  , 

with the boundary conditions: 

gj(Mst]sy) = gi(Msvsr), (j = 1,2). (4.4) 



274 

The fl-functions in this model are: 

487r2fl~ 

487r2fl~ 

48~-2flg~ 

48r2flgl 
48~r2~a~ 
16~r2flh~ 
16~r2fl~ 

= [(½Na +/VE+ 4 N 7 -  22)~ + 3Neh 2 + O(g ] - ff2)]~ 

1 = (~N~ + :Nd + ~Z)gt 

1 ArE + 4Ni, - 22)g24 = (4Ng + ~ d  + 

= (41v~ - 33)9~ 

(9h2  17 2 3~2  1 ~-2~/.2 = k2" t 8932 9 2 - -  --  ~g2 --  H g l  + ~g2 + ~Yl ) '~ t  

= 12~ ~ + ~[29~ + (g~ + gl~)~l- ¼(~ + y~)~ - y~ - Arch,' 

- ½A(9g 2 + 3.q~ - 4N, h 2 - 6y] - 2y~). 

(4.5) 

Here the number of generations is Ng = 3, the number of Higgs doublets present 

below the scale vrs is Nd = 1, the number of Higgsino doublets is N~ = 2 and 

the number of fermionic triplets is N i- = 1. In addition the number of complete 

Higgs-Higgsino doublets is denoted by /V~" = 1 [note that /~E < min{Nd, N~}]. 

Since the low energy theory below MsusY possesses only one Higgs doublet, there 

is only one Higgs self-coupling A = A2. Notice that 8fla = flg~ + flg~ if we impose 

the supersymmetric boundary conditions and set h = Ng = 0. The only remnant 

of SUSY will be the boundary condition eq. (2.4). The tree-level relations for the 

masses are: 

2 2 2 rnho : 4A(rnweak )V , m2z = l [g2(m2weak)'at-g2(m2eak)]V 2 (4.6) 

and the Higgs mass shift to all orders in the leading logs is: 

(~m~0)R~E m~0 m~ 2 [4A(mweak) 1 2 2 2 2 = - = - ~ ( ~ 2  + g l ) ( , n ~ . k ) ] .  • ( 4 . 7 )  

Here A and gj (j = 1,2) are the solutions of the RGEs with the boundary condition 

eq. (2.4) at the scale v/~ = MsusY.  Note that MsusY is the only free parameter 

in the squark (slepton) sector. The RGEs [eq. (4.5)] can be solved iteratively. To 



275 

first order in the leading logs the solutions are: 

= ~(m~o.k) + ~ t ,  A(MsvsY) 2 
2 2 

M 2 ln[ SU SY ] where t -= ~ . 
L ~,ok J 

(4.8) 

The shift of the Higgs mass to this order is: 

~2m2 r _4  my 
• y(flg~ q- 1 ~ "  I~'~'T 3-~z z 4- -t- -ff~'WJ ( A m , , o ) x , L  = t  - = - 

• .v,o W '°°Z 
(4.9) 

Here we have simply recovered the leading logs of eq. (3.1) and of the second 

term in eq. (3.7). Additionally, there will be a finite contribution to the effective 

Higgs self-coupling constant and the effective gauge coupling constants fl'om the 

A-parameter. This can be included by modifying the boundary condition at the 

scale V~ = M s U s Y :  

1 2 1 at]A~7 bvA~7"~ 
= + 2,, + j ,  

where au and bu are defined as in eq (3.4). This result has been deduced by com- 

parison with the one-loop result in eq. (3.3). There is no contribution from the 

bottom squark to this order since # << M s u s Y .  This shift of the effective coupling 

constants has also been obtained explicitly by evaluating the corresponding Feyn- 

man diagrams [6]. If we evaluate the Higgs mass shift [eq.(4.7)] with the modified 

boundary conditions [eq. (4.10)] we find that it agrees with the one-loop result in 

eq. (3.3) to first order in perturbation theory. However, there are two important 

differences: first, all the parameters in eq. (4.10) are evaluated at the SUSY scale 

and the ones in eq. (3.3) are evaluated at the weak scale. Second, the modification 

of the boundary condition will implicitly change fla and thus also the leading log 
result. 

Our goals now are twofold. First, we want to replace the leading log approxi- 

mations [eq.(3.1) and (3.7)] by the sumof the leading logs to all orders and second, 
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Fig. 9. The radiative corrections to the upper limit of mh0. The solid, dashed and 
dash-dotted curves denote the shift of the Higgs mass for mt = 150, 200 and 250 GeV. 
The A-parameter is A~ = 6 - 2m2z/m2t. The larger of the two values correspond to 
the pure one-loop corrections. The smaller values are the one-loop corrections including 
RG E-improvement. 

we want to include the contributions of the soft SUSY-breaking terms (that  means 

the A-parameters)  at the SUSY scale where they are generated rather  than at the 

weak scale. That  means, that  the RGE improvement in eq. (2.2) is obtained by 

taking the solutions of the I~GEs with the boundary  condition eq. (4.10) and sub- 

tracting the one-loop leading logs [(Am~0)LL] a~ well as the leading order mass 

shift due to the A-parameter  [(Am20)t]] given in eq. (3.3): 

2 2 (Amho)RGiMP = -- -- (4.11) 

In fig. 9 we have plotted the mass shift /kmho "~ mho -- rn g as a function of the 

supersymmetry  breaking scale M s g s r  for m t =  150, 200 and 250 GeV. Here we 

have simply taken 2 to be mt 2 since the largest corrections arise from the top- mweak 
stop sector, and all SUSY breaking parameters  have been set equal t o  M s g s Y .  

The effect of RGE-improvement  is to flatten out the logarithmic increase with the 

scale. 
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Fig .  10. The upper l imit  of mh0 as a function of m, for M 6 = ME = M'~ = Msvsr  = 

103, 106 and 10 is GeV (dashed, dot-dashed and dotted,  respectively). Here the chargino 
and the neutral ino masses are of order the weak scale [(M2 = /~  = O(mz)]. The dot ted 
curve is the solution of the RGEs and thus only contMns the leading logs to all orders, 
As the boundary condition we have chosen the largest possible value of A in the MSSM 
given in eq. (4.10). This curve ends at  195 GeV because the top-Higgs Yukawa coupling 
diverges at  some energy scMe below MsusF. The solid lines correspond to the solution 
of the I~GEs with only the SM particles present below Msvsy = 1016 GeV. In the upper 
solid curve A(Msvsr) is defined as in eq. (4.10)• The lower solid curve is the lower limit 
of the  Higgs mass in the SM. It  is derived from the requirement that  A remain positive 
all the way up to the GUT-scMe 

In fig. 10 we have plotted the one-loop radiatively corrected upper limit of the 

lightest Higgs mass including RGE-improvement as a function of the top quark 

mass. The A-parameter is chosen such that it yields the maximum mass shift. 

The charginos and neutralinos are kept at the weak scale (1~ = M2 = rag)  and 

the second Higgs doublet and all the sfermion masses are assumed to be at the 

s v s v  scale [MsvsY = MO = M r = M 5  = mA0 = 10 3 (10 8) CeV for the 

dashed (dot-dashed) graph]. The solid and dotted curves are not the full one-loop 

corrections but are the solutions of the RGEs. In the dotted curve the parameters 

are chosen as above except that the SUSY scale is moved all the way up to the 
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GUT scale M s g s y  = MGffT = 1016 GeV. It is interesting to note that the upper 

limit of mho increases only by about 20 GeV by going from M s u s Y  = 106 GeV 

to l~/Isvsy = 1016 GeV. Furthermore, in this scenario we leave the perturbative 

regime if the top quark mass becomes larger than 195 GeV, as the top Yukawa 

coupling develops a Landau pole before the GUT-scale is reached. In the two lower 

curves all the superpartners acquire masses of order M s U S Y .  The only difference 

is the boundary condition for A; in the upper curve A starts at its maximum value 

[eq. (4.10)] and in the lower curve A is chosen to be minimal such that it never 

goes below zero. This last curve is a lower limit of the Higgs mass in the SM. It 

is derived from the requirement that minimum of the potential at v = x / -2mw/g2 

is the absolute minimum, that is A is positive all the way up to the GUT scale. 

These two graphs converge for large top quark masses. This can be explained by 

examining the dominant contributions to fl~. Here it is important to note that 

the self-coupling constant A becomes large at low energies and has to be included. 

Thus we find: 

16~r2d)~ = 12~ 2 - 3ht 4 + 6h2£ (4.12) 

We see that £ can only grow for decreasing t as long the right-hand side of eq. (4.12) 

in negative. Therefore this equation has an infrared fixed point when the right- 

hand side vanishes. This happens for ht 2 = (1 + v/5)~ or mh 0 = 1.11mr. This crude 

estimate is in good agreement with the solid and dotted curves in fig. 10. 

5. Conc lus ions  

We have calculated the full one-loop radiative correction to the upper limit 

of mho in the minimal supersymmetric model (MSSM). The dominant contribu- 

tions to these corrections grow logarithmically with the masses of the superpart- 

nets. This shift of a particular supersymmetric sector is positive (negative) if the 

heavy partners are bosons (fermions). Summation of leading logs to all orders 

in perturbation theory is achieved by employing RGE techniques. Including the 

RGE-improvement the mass shift actually grows less quickly than l n ( M s u s y / m 2 z )  

and eventually converges to a fixed point. This behavior suggests that even with 

fine-tuning, the mass of the lightest Higgs boson can not exceed the top mass by 

more than roughly 15%. It is interesting to note that this bound is not far above 
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the lower limit of the Higgs mass in the SM coming from stability constraints of 

the electroweak vacuum. Thus the overlap of the regions in the mt-mho plane 

compatible with both MSSM and the SM (assuming that there is no additional 

new physics between the weak scale and the GUT scale) is rather small. This gives 

hope for the possibility that with the discovery of the t-quark and h ° at least one 

of these two models can be ruled out. 
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Abstract  

The interesting possibility that the spontaneous breakdown of the elec- 
troweak symmetry relies on the formation of condensates of the quarks of the 
third generation was recently pointed out by several authors. In these lectures 
we discuss the recent efforts towards the understanding of the physical impli- 
cations of such a possibility. The minimal class of models are just equivalent 
to the Standard Model with specific ultraviolet boundary conditions, the so 
called compositeness conditions, on the renormalization group trajectories of 
the physical couplings. Sharp low energy predictions for the top quark and 
Higgs masses appear within this framework. The possible generalizations of 
these models are discussed and different proposed dynamical scenarios for the 
generation of the effective short distance interactions are described. 

1 I n t r o d u c t i o n  

Recent experimental data  has confirmed to a very high accuracy level the predictions 
of the Standard Model, a gauge theory based on the symmetry  group SU(3)c x 
SU(2)L x U(1)r  [1]. The spectrum is replicated in three families of fermion fields, 
with each family transforming with equal quantum numbers under the symmetry 
group. Indeed, although one member of the third family, the so called top quark, has 
not been observed until now, precise experimental measurements imply not only its 
presence but also the range of allowed values for its mass [2]. 

The symmetry group of the Standard Model is spontaneously broken to SU(3)c x 
U(1)e,~ through the so called Higgs mechanism. For the minimal physical realization 
of this mechanism in the Standard Model, a scalar Higgs field, t ransforming as a 
doublet under SU(2)L, is needed. The Higgs field acquires a vacuum expectation 
value, inducing the breakdown of the electroweak symmetry and giving masses to 
the gauge bosons through their gauge couplings. Within this framework, the three 
families of fermions acquire masses through their Yukawa couplings to the physical 
neutral Higgs field. These couplings are free parameters of the theory and their tree 
level values are independent of the gauge coupling values. Hence, the Standard Model 
provides no explanation for the striking hierarchy of masses between the fermions of 
the first and the third generations, 

m t  
- -  > l0 ~ (1.i) 
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where mt and rn, are the top quark and electron masses respectively. In fact, although 
the value of the electron mass is well below the weak scale, m, = 511 KeV, the top 
quark is probably heavier than the vector bosons mediating the electroweak gauge 
interactions. As we will see below, the understanding of the heaviness of the top 
quark is one of the main physical motivations for the dynamical scenarios under 
discussion. 

In spite of its increasing phenomenological success, the Standard Model provides 
no explanation for the family replication mad the particular gauge symmetry structure 
of the theory, and gives no satisfactory answer to the difficult question of masses. An 
answer to these questions can only be provided if we assume the Standard Model to be 
an effective cutoff theory, correctly describing the particle phenomenology only up to a 
certain high energy scale A at which new physics should appear. In addition, a correct 
phenomenological description requires the inclusion of the gravitational interactions, 
which become relevant at energy scales of the order of the Planck scale, Mp ..~ 
101° GeV. Hence, the Planck scale is expected to provide the order of magnitude 
of the maximum energy scale until which the Standard Model may give a correct 
phenomenological description of the elementary particles interactions. For a heavy 
top quark or scalar Higgs, there is another reason to assume the appearence of new 
physics at some finite scale A, which is related to the nature of the continuum limit 
of the standard model. The continuum limit may be defined as the limit in which the 
cutoff is removed, that is the ratio of the physical masses to the cutoff goes to zero. 
In the standard model, the Higgs-Yukawa sector, as well as the U(1)r gauge sector, is 
not asymptotically free. The Higgs Yukawa sector of the theory has an infrared fixed 
point at vanishing values of the Yukawa couplings and the quartic coupling of-the 
scalar Higgs field. If no other fixed point is present in the theory, the coupling values 
will be tuned to their fixed point values in the continuum and the theory will be trivial, 
that is noninteracting. The U(1) gauge - fermion sector has also an infrared fixed 
point at vanishing renormalized gauge coupling, and the same conclusions as for the 
Higgs Yukawa sector apply. In other words, if the renormalization group fl function 
does not have an additional zero apart from the trivial one, for any nonvanishing 
value of the relevant couplings the theory will become strongly interacting at a finite 
energy scale A, signaling the presence of new physics. In these lectures we will call 
"triviality bound "on a given coupling, for an effective cutoff A, to the low energy 
value of this coupling for which the theory becomes strongly interacting at scales of 
order A. 

The existence of new fixed points in a quantum field theory can only be investi- 
gaded through nonperturbative methods. Lattice studies of the Higgs Yukawa sector 
and of the noncompact version of QED have shown complex phase diagrams. In lat- 
tice QED, for example, a critical bare gauge coupling have been found, above which 
the global chiral symmetry of the massless theory is dynamically broken [3]. In the 
Higgs Yukawa sector other phases than the symmetric (or paramagnetic) and sponta- 
neously broken (or ferromagnetic) phases appear [4],[5]. In spite of these interesting 
results, there is no hint of a nontrivial ultraviolet fixed point in the Higgs Yukawa 
theory. In the U(1) gauge - fermion theory case, the analysis is more involved and a 
definitive answer to this question is still lacking. 
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An important remark is that, in the presence of asymptotically free couplings, a 
potentially trivial theory may have a nontrivial continuum limit if a mechanism of 
reduction of couplings is in effect. In the case of the Higgs Yulmwa sector coupled to 
QCD, for example, a nontriviM continuum limit exists [6]. A reduction of couplings 
between the top quark Yukawa coupling, the scalar quartic coupling and the QCD 
gauge coupling occurs if the top mass is approximately 100 GeV. In this scheme, 
the top quark Yukawa coupling is attracted to a nontrivial fixed point value, which 
was first found in Ref. [7]. In addition, for moderate values of the top quark mass 
mt < 200 GeV, the top quark Yukawa coupling becomes strong at energy scMes far 
above the Planck scale, where, as we discussed above, the low energy description 
is expected to loose its validity. This is similar to what happens with the abelian 
gauge coupling, which is expected to become strong at very large scales, and hence 
the so called Landau singularity of the U(1) running coupling constant is usually 
considered to be of theoretical, rather than phenomenologicM, interest. If, however, 
the top quark mass rnt > 200 GeV, the top quark Yukawa coupling /~ function 
becomes positive at large energy scales, reaching the strong coupling regime at an 
energy scale of the order or lower than the Planck mass. If, as suggested by lattice 
and 1~No studies, no nontriviM ultraviolet fixed point appears at large values of the 
Yukawa coupling constant, new physics should appear above an effective cutoff scMe 
A < MR. It is for these relatively heavy top quarks that the minimal dynamical 
breakdown of the electroweak symmetry takes place. 

As we explained above, in the standard model the scMe of the gauge bosons and 
fermions masses is determined by the vacuum expectation value of the Higgs field. 
Assuming the standard model to give a good phenomenological description up to 
scales of order A, a hierarchy problem arises if we wish the ratio of A to the gauge 
boson masses to be much larger than one [8]. The problem can be rephrased in 
what is called the fine tuning problem. This is based on the fact that, as will be 
discussed below, the fermionic radiative corrections to the scalar mass parameters 
are proportional to the cutoff squared 

Arn 2 ~ --oIA 2 (1.2) 

where ~ is a number of order one. Hence, the mass parameter of the scalar field at 
the scale A~ m~ must be fine tuned to a very precise value in order to obtain 

, ~  + ~ , ~  = -O(v  ~) (1.3) 

as required by the standard model, where v __. 175 GeV, is the vacuum expectation 
value of the Higgs field. The fine tuning problem can only be solved by pushing the 
scale at which new physics appears to be of the order of 1 TeV. One of the most 
interesting ways of giving a solution to this problem is by considering the minimal 
supersymmetric extension of the standard model [9]. In this case, all quadratic 
divergences disappear and the fine tuning problem is solved. However, since the 
quadratic corrections to the scalar mass parameters are proportional to the scale of 
soft supersymmetry breakdown, the unobserved superpartners masses should be of 
the order of 1 TeV if a real solution to the fine tuning problem exists within this 
context. 



283 

The effective theory at the effective cutoff scale may include apart from the usual, 
renormalizable interactions, higher dimensional, usually called irrelevant, interac- 
tions. In general, the Lagrangian density may be rewritten as 

f.. = £re,~ + £ , ,  (1.4) 

where £:I includes all irrelevant interactions. As an example, let us consider [10] 

K 6 (1.5) 

in the scalar ¢4 theory. Upon renormalization these new irrelevant interactions induce 
finite corrections to the values of the renormalized couplings, Am~ and AA, but no 
new physics is induced in the scaling region where cutoff effects may be neglected. 
However, irrelevant interactions can produce relevant effects, if their inclusion induce 
a phase transition at some nonvanishing critical value of their associated couplings. In 
this case, new physics may appear at the critical points, through relevant interactions 
of composite fields. One well known example of this is the so called Nambu Jona - 
Lasinio model [11], 

=  ( LeR)( ReL) (1.6) 

where £re~ includes the usual kinetic term for the massless fermion fields. In this case, 
a phase transition to a phase in which global chiral symmetry is broken, is induced 
if the four Fermi coupling G is above a critical value Go. A complex composite 
scalar field H = G ~bLen, which includes a massless real goldstone boson and a real 
massive field, appears in the physical spectrum of the theory. In the broken phase 
the fermion acquires a nonvanishing mass, my, through the < ¢ ¢  > condensation. 
The scaling region, in which all physical masses are much lower than the cutoff scale 
A and the scalar field H becomes a dynamical field, is achieved by tuning G to its 
critical value. An important feature of this model is that its infrared structure is 
completely equivalent to the one of the Higgs - Yukawa theory [12]. In addition, in 
the broken phase, the relevant Yul~wa couplings of the fermions with the scalar fields 
are strong whenever A / m y  < 1015. This can be seen as a signature of the composite 
nature of the scalar field. The Nambu Jona Lasinio model provides the basis for the 
so called Top Condensate Models, which will be analysed in the next section. 

2 M i n i m a l  D y n a m i c a l  E l e c t r o w e a k  S y m m e t r y  
B r e a k i n g  

As we discussed above, the generation of masses in the standard model relies on the 
presence of the scalar Higgs sector, which, together with the top quark, has eluded 
the experimental searches performed so far. Although in the standard model the 
physical Higgs is thought to be an elementary scalar particle, it is probably providing 
only an effective description of the more fundamental dynamics responsible for the 
electroweak symmetry breaking. In the most simple proposed dynamical scenarios, 
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the scalar Higgs is replaced by a set of massless fermions coupled to a new strongly 
interacting gauge sector. The chiral symmetry breaking is induced by this new strong 
interactions, called technicolor due to the analogy with QCD, and the Higgs appears 
as a bound state of the new fermions, which are called techniquarks [13]. Although 
technicolor theories provide a solution to the fine tuning problem, it is difficult to 
incorporate a heavy top quark within this scheme. It would be interesting to find a 
dynamical scheme in which the breakdown of the electroweak symmetry would not 
require the addition of new fundamental fermions, and in which a heavy top quark 
could be incorporated in a natural way. The top condensate models are an interesting 
attempt to provide such a scheme. 

The experimetal lower bound on the top quark, m: > 89 GeV, has opened the 
window for a a strongly coupled Higgs - top quark sector. This motivated several 
authors to inquire into a possible relation between the heaviness of the top quark 
and the nature of the dynamics leading to the generation of masses in the standard 
theory. In fact, in analogy to what happens in the Nambu Jona Lasinio model, a 
strong Yukawa coupling could be the signature of a dynamical mechanism for the 
electroweak symmetry breaking which relies only on the observed quark and leptons 
of the standard model, and in which the Higgs field appears as a t - { b o u n d  state. The 
basic mechanism for the physical realization of this idea was first proposed by Nambu 
[14], by making an' analogy between the spontaneous breakdown of the electroweak 
symmetry in the Standard Model and the BCS [15] mechanism in condensed matter 
theories. Several authors analysed the physical consequenses of such a scenario [16] 
- [17], and a detailed field theoretical analysis was first done by Bardeen, Hill and 
Lindner in Ref. [18]. They started w i t h  a gauged, SU(3)c x SU(2)L x U(1)y invariant, 
Nambu Jona Lasinio model, 

= + LyM + C (2.1) 

where I~N and ~'~YM a r e  the kinetic terms for the fermion and Yang Mills fields 
respectively, ¢~ -- (~ b)L, ¢ and b are the bottom aad top quark fermion fields 
and the indices c and d indicate a sum over color degrees of freedom. In this first 
simplified formulation only the top quark acquires mass. The masses for the other 
fermion fields, however, may be generated by introducing the corresponding Yukawa 
couplings between the fermions and the scalar composite field [18] - [19]. 

If G > 0 the interactions are attractive', and for G > Go, the local chiral symmetry 
of the theory is broken through a top condensate, < {t > #  0. In the scaling region, 
a composite scalar doublet, 

H = a {ne t  (2.2) 

appears in the spectrum of the theory. The quantum numbers of these composite 
fields are exactly equal to the ones of the elementary Higgs field in the standard model, 
and hence, for G > G~ the SU(2)L x U(1)y local symmetry is broken to U(1),,~. Three 
massless Goldstone bosons, associated to the breakdown of the gauge symmetry are 
induced, giving masses to the electroweak gauge bosons through the usual Higgs 
mechanism. In addition, a physical, electrically neutral scalar field appears in the 
spectrum of the theory. In general, the low energy spectrum is completely equivalent 
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to the Standard Model one, although the reduction in the number of free parameters 
of the theory increases its predictability. In fact, as we will discuss below, for a given 
effective cutoff scale A, sharp predictions for the scalar Higgs and top masses can be 
made within this context. 

2 .1  L a r g e  N c  A n a l y s i s  o f  t h e  T o p  C o n d e n s a t e  M o d e l  

The dynamical properties of the gauged Nambu Jona Lasinio model can only be 
explored by using nonperturbative methods. A systemathical analysis can be done, 
for example, by solving the self consistent Schwinger Dyson equations of the theory 
in the large Nc approximation, where No is the number of colors [18]. The critical 
four Fermi coupling, for example, may be estimated by solving the self consistency 
equation for the top quark mass. We will first study the model in the so called bubble 
approximation, that is the large Nc limit, for vanishing SU(3)o gauge coupling value. 
The dynamical effects of the inclusion of the SU(3)c interactions will be discussed 
below.In this approximation, we obtain 

GNc A2 2 log m~ (2.3) 
772 t ~ -  871.  2 - -  / 7 l  t 

Hence, for a nontrivial solution of the gap equation, m t #  O, the top quark mass is 
given by 

mr2 l ° g .  - ~  - Nc-"-'G (2.4) 

Observe that, since the left hand side is positive a nontrivial solution only exists if 
G > Ge, with Gc = 8rr2/NoA 2. Since the log(A/mr) is only a slowly varying function 
of mr, the natural scale for the fermion mass in the broken phase is just the cutoff 
scale. A large hierarchy between the cutoff scale and the fermion mass scale requires 
a very precise fine tuning of the four Fermi coupling to it critical value, which is 
nothing but the usual fine tuning problem of the standard model. 

The relation between this model and the standard Higgs Yulmwa model becomes 
apparent if we rewrite the Lagrangian density in an equivalent form, by the intro- 
duction of an auxiliary scalar doublet H 

£ = f-.CK + f-.rM + ebLt~H + Ht~¢bL -- MgHt.H, (2.5) 

where M~ = 1/G and H can be eliminated through a Gaussian integration, or equiv- 
alently by its replacement through its equation of motions H = G {ritZ. At this 
level, the scalar field H is a static field, with no independent dynamics. The physical 
picture changes, however, once the quatum fluctuations of the fermion fields are taken 
into account. In the bubble approximation, for example, the scalar fields propagate 
through fermion "bubbles ". The propagator of the scalar field H, D -1 (p), may be 
obtained by computing the bubble function with external momentum p through the 
relation[20] 

1 
D-l(p) = ~ + B(p) (2.6) 
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where B(p) is the bubble function. A nonvanishing kinetic term for the unrenor- 
malized scalar field H appear, together with a correction to its physical mass. The 
function B(p) is quadratically divergent, but the quadratical divergences are can- 
celled once the gap equation is taken into account. Observe that the fermion mass is 
nothing but the vacuum expectation value of the electrically neutral, CP even com- 
ponent of the scalar field < H ° > and hence once the gap equation is fulfilled the 
quadratical divergences of the scalar propagator are automatically cancelled. 

The propagator of the neutral scalar field H ° may be explicitly computed, giving 

D-'(p) = ~ (p2-  4m~)log + x ( p  2 ) (2.7) 

where for p2 = O(m~) and A >> rn:, the function X(p 2) is negligible. Hence, the 
neutral scalar field propagator has a pole at 

ran0 = 2 m , .  (2 .8 )  

We would like to emphasize that this prediction was obtained in the context of the 
bubble approximation where important effects, like the QCD corrections, have been 
neglected. Although these corrections do not change the qualitative physical picture, 
they have an important incidence on the quantitative relations between physical 
couplings and masses. 

The effective scalar potential for the unrenormalized field H ° 

1 
(H°)2 + W(H °) (2.9) V ( H  o) = -~ 

may be computed by making use of the relation[21] 

OW(< H ° >) = < ~ > (2.10) 
0< H ° > 

where, from the gap equation 

( w~ A~ - . q l o g  ~,. (2.11) < {t > =  -4~r---- ~ 

Hence, the effective potential reads 

The minimization of the effective potential, reproduces the gap equation for the 
vacuum expectation value of the neutral Higgs component < H ° >--  mr. From the 
effective potential it is clear that for G < Gc the minimum of the potential is at 
vanishing < H ° >, while for G > Go, nonvanishing values of < H ° > are preferred. 
Finally, for A >> m:, the effective quartic coupling for the unrenormalized scalar field, 
(H°)4~0/2 is given by 

Nc ( A )  (2.13) ~° = ~-~z~ l°g 



287 

2.2 Electroweak Gauge Bosons and the Higgs Mechanism 
Apart from the physical neutral field H °, three massless Goldstone bosons appear in 
the spectrum, both in the pseudoscalar channel A = G {75t as in the charged channels 
H + = G bLtn and H -  = G {RbL. Once the weak gauge couplings are restored in the 
model the electroweak gauge bosons acquire mass by absorving the Goldstone bosons 
degrees of freedom. The quantum corrections induced by the fermion fields may be 
understood as the sum of the interactions of the gauge bosons with the renormalized 
Goldstone modes plus the single bubble polarization diagram, which restores the 
transversality of the propagator. The coupling constant of the interaction of the W 
boson with the renormalized charged Goldstone mode is nothing but the charged 
Goldstone decay constant, fw(p2). Hence, the result is given by [18] 

where the value of the gauge boson mass is given by the on -shell condition 

M~: 2 2 2 2 = g2(M~v)f:v(M~,) (2.15) 

In the bubble approximation the value of the zero momentum decay constant is given 
by 

f~v(0) = 4V~G---'-~ ~ razor 2) ~ . (2.16) 

A similar expression is obtained for the neutral gauge boson Z ° with an effective 
gauge coupling equal to (g~ + g~),/2 and 

f (0) (2.17) 
Hence, the tree level relation between the Z ° and the W d: masses is obtained. In 
addition~ the standard value for the p parameter is also reproduced. The low energy 
electroweak predictions are hence equivalent to those of the Standard Model. How- 
ever, from Eq. (2.16), a relation between the Fermi scale, the effective cutoff scale 
and the top quark mass is obtained. Fixing the Fermi scale to its physical value, we 
obtain a top quark mass of mt ~ 165 GeV for a cutoff scale A ~ 1015 GeV. Let us 
remark again that neither this result, nor the relation rn~ = 2m~, can be considered 
as predictions of the model, since they were obtained in an approximation in which 
all gauge corrections, and the dynamical effects of the propagating scalar fields have 
been neglected. We will perform a detail analysis of these effects in the framework 
of the effective Lagrangian description. 

3 E f f e c t i v e  L a g r a n g i a n  A n a l y s i s  

For A >> mr, the values of the relevant quantities are dominated by large logarithms, 
and all physical results may be reproduced by doing an effective field theory analysis. 
We start with the Lagrangian density 

-b  b L:(A) = C~. + C},M + e L t n g  -t- Ht~n¢~ - M~HtH, (3.1) 
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which characterizes the interactions at the large energy scale A. The effective theory 
at the low enrgy scale /z may be obtained by integrating out the short distance 
fermion effects, which in this context is equivalent to consider the quadratic and 
large logarithmic corrections induced by the fermion loops 

where 

-b b ~(,)  = ~ + z:vM + ¢ ~ H  + H '¢¢~ 

AO(HtH)2 (M~ + AM2)HtH, +ZH IZ),,HI * - T (3.2) 

z .  = t - ~ l o g  

~o = 2ZH (3.3) 

while A M  2 ~, -1/Gc. The values of the wave function renormalization constant and 
of the quartic couplings are normalized so that the effective Lagrangian coincides 
with Eq.(3.1)  at # = A. This leads to the following boundary conditions 

Zg(# ~ h)  = 0, A0(# ~ A) = 0 (3.4) 

which are called the compositeness conditions. Observe that  for p ~ m, we recover 
the effective potential and the propagator for the physical scalar field that we obtained 
in the last section. 

The Lagrangian can be rewritten in a more conventional way by normalizing 
the field H so that it has a canonical kinetic term, H ---* Z~/2H. In terms of the 
renormalized field, the Lagrangian may be rewritten as 

f~(~) = f~CK dff ~'-'YM "~ htCbt~g + htHttbnCbL 
A 

( ~ ' z )  ~ - m~,~*H, (3.5) + I:D, HI 2 - 

where the renormalized couplings h, = ZH 1/2 and A = ZH2Ao. The compositeness 
conditions imply the divergence of the renormalized couplings when # ~ A. 

- ~ ,  

A = 16.2 1 (3.6) 

The physical Higgs and top quark masses are given by the on shell relations 

m, = h , (m, )  v, .*~0 = 2 A(m?,) v~ (3.7) 

where v is the vacuum expectation value of the renormalized field v _ 175 GeV. Since 
in the bubble approximation the relation A(I.t)/(2h~(#)) = 1 is fulfilled, the relation 
m~ = 2rn, is recovered. 
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Since the results of this section only depend on the leading logarithmic corrections, 
they may be recovered by making use of the renormalizatlon group equations for the 
renormalized couplings ht and A [22], in the bubble approximation, 

167r2d~ t = Nch~ 

16r2dd-~ = -4Nvh~ + 4Neh~ .  (3.s) 

where t = log(#/A). If these equations are solved, with the compositeness boundary 
conditions for the renormMized couplings, Eq. (3.6) is recovered. Hence, the renor- 
mMization group technique provides a simple and powerful tool for the analysis of 
the physical implication of the theory in the infrared regime. 

3 .1  Q C D  C o r r e c t i o n s  

Although the bubble approximation gives a good qualitative description of the top 
condensate model, the QCD corrections should be taken into account to achieve cor- 
rect phenomenological predictions. Actually, QCD effects play a very relevant role in 
the final quantitative predictions of the model. The inclusion of the strong gauge in- 
teractions should be considered as a first step for the analysis of the model, since the 
electroweak gauge interactions and dynamicM Higgs fields effects must be included 
in order to obtain reliable phenomenological predictions. A large Nc analysis, in 
the context of ladder QCD was done in Ref. [23]. The top quark and Higgs masses 
may be computed by solving the corresponding Schwinger Dyson equations for the 
fermion and scMar propagators in the large Nv limit. As happens in the bubble 
approximation, in the scaling region the value of all the physically relevant quanti- 
ties are dominated by large logarithms. Hence, the results of ladder QCD may be 
recovered by solving the improved renormalization group equations 

' = 1)g h, 

16~r~.--~ = - 4 N v  h ~ -}- 4Nc h ~ A (3.9) 

together with the compositeness boundary conditions, where Ng is the number of 
generations. (Note that, at this level, we already include the effect of the light 
quarks in the QCD running coupling constant). 

For values of A = O(1015) GeV, the large Nv solutions are dominated by an 
infrared quasi-fixed point. This is an approximate fixed point of the theory, which 
would become exact only if the beta function of the QCD coupling were equal to 
zero [24]. More specifically, the relations implied by this quasi fixed point in the 
ladder QCD limit are h~ ~ (No - 1/Nc)g~ and A ~ g~: Since Ncg~ is a slowly 
running coupling for energy scales ~u of the order or greater than rnt, the running 
coupling constants are attracted to their infrared quasi fixed point values, whenever 
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they are in their vicinities. This acutaUy happens for a large range of compositeness 
scales A _~ 101° - 1019 GeV. Taking into account this nontrivial infrared structure, 
we obtain an approximate value for the top quark mass mt ~-, 300 GeV and the ratio 
m~/rnt = V~. This shows, as we anticipated, that the QCD effects can produce 
significant quantitative corrections to the physical couplings. 

It is important to remark that this infrared quasi fixed point value has nothing to 
do with the nontrivial infrared fixed point value found in Ref. [7]. As we discussed 
in the introduction, the Pendelton and Ross infrared fixed point, which is reached 
in the reduction of couplings scheme[6], is an exact solution to the renormalization 
group equations and occurs for somewhat smaller values of  the top quark mass than 
the infrared quasi fixed point analysed above. 

4 Improved Renormalization Group Analysis 

The results of the last section can be improved by including the electromagnetic 
and weak gauge interactions, together with the dynamically generated scalar effects. 
This can be done by including nonleading order in 1/N effects in the self consistency 
equations for the scalar Higgs and top quark self energies. When the compositeness 
scale is much larger than the weak scale, the value of the relevant coupling is well 
determined by computing the leading logarithmic corrections. Hence, the results of 
this approximation can be reproduced by considering the full one loop renormalization 
group equations of the standard model [18]: 

17 ~ 

dgi = ~ig~ 
16~2 dt 

1 6 ~  = 1 2 ( ~ + ( h ~ - A ) ~ + B - h ,  ~) (4.1) 

where A -.~ g2/4 Jc 3g2/4,  B .~- 64/4 -~- g2g~/~ .~_ 364/16, ~1 ~--- 41/6, ~2 -~ --19/6 and 
~3 = - 7 .  

As in the ladder QCD case, the solutions to the renormalization group equations 
with the ultraviolet boundary conditions, are strongly focused to the infrared quasi- 
fixed point present in the theory. The infrared quasi fixed point value for the top 
quark Yukawa coupling is slightly lower in this case than in the pure ladder QCD 
case, mainly due to the dynamical Higgs contributions to the renormalization group 
equation of the top Yukawa coupling. In Fig. 1, we show the solution to the running 
top Yukawa coupling constant for different ultraviolet boundary conditions. Observe 
that, for a compositeness scale of the order of A = 101° - 1019 GeV, the top Yukawa 
coupling is strongly focussed to a small set of infrared values, with corresponding top 
quark masses of the order of 230 GeV. 

The quartic coupling is also attracted to its infrared quasi fixed point value, which 
as can be seen from Eq.(4.1), gives a relation between the top quark Yukawa coupling 
to the quartic coupling which translates into a mass ratio rnHo/rn~ ~ 1.1 The exact 
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numerical values for the top quark and Higgs masses obtained in the different approx- 
imations and for different values of the compositeness scale are shown in Table 1 [22]. 

A(aeV) 
m, (GeV) Bubble Sum 144 165 200 277 
mt (GeV) Planar QCD 245 262 288 349 
m t  (GeV) Full RG Eq. 218 229 248 293 
mh (GeV) Full RG Eq. 239 256 285 354 

Table 3.1 Predictions for the top quark mass mt  and the Higgs mass m h in the dif- 
ferent approximations described above. 

The values for the top quark and Higgs masses obtained by using the full, ofle 
loop renormalization group equations are stable under variations of the ¢ompositeness 
scale A. It follows from Table 1 that, for A _~ 1015 GeV, these masses vary less than 
a 20 % under a variation of the compositeness scale of eight orders of magnitude. In 
general, for A ___ 101' GeV, 

mt  _> 210GeV.  (4.2) 
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Fig. 1. Improved R.G trajectories of the top quark mass (h,(#) v) as a function of 
the ~cale ~, for a compositeness scale (h)  A = 101~ OeV and (B) A = 101' CeV [241. 
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As we discussed in section 1, for a given effective cutoff scale A, the triviality bound 
on the top quark may be defined as the value of mt which is obtained assuming that 
the top quark Yukawa coupling becomes strong at scales of the order of A. Since in 
the dynamical scheme under consideration the remormalized coupling diverge at the 
compositeness scale, the top quark mass obtained within the top condensate model is 
consistent with "the renormalization group trajectories associated with the triviality 
bounds on this quantity~ for an effective cutoff scale equal to the compositeness scale. 
As is apparent from Fig. 1 [24]~ the presence of the infrared quasi fixed point, makes 
the value of this bound very insensitive to the exact large value of the top quark 
Yukawa coupling at the effective cutoff scale. The triviality bound on the top quark 
mass may be interpreted as the maximum allowed value of this quantity in any 
theory in which no new physics appear up to scales of order A, and hence is of great 
theoretical interest. 

5 Sens i t iv i ty  to the  Inclus ion of  Higher  D i m e n -  
sional  Interact ions .  

The theory described above may be generalized by introducing additional effective 
interactions at the scale A [25]. A general set of higer dimensional interactions can 
be introduced, so far they are consistent with the symmetries of the theory. The 
effective Lagrangian at the compositeness scale, for example, may be written as [26] 
-[27] 

(5.1) 
The additional interactions included in the above Lagrangian, Eq. (5.1), preserve 
the SU(3)e x SU(2)L × U(1)y symmetry of the theory. The couplings G, f and X 
can get arbitrary values So far they are consistent with the generalized gap equation 
of the model. The model above is expected to be in the same universality class as 
the gauged Nambu Jona Lasinio model. The additional interactions are expected 
to induce only finite corrections to the renormalized couplings derived within the 
framework of  the Nambu Jona Lasinio model. Since the theory described by the 
above Lagrangian, has the same number of free parameters as the ¢4 Higgs - Yukawa 
theory ( given by the bare Higgs mass parameter M0, the bare Yukawa coupling and 
the bare quartic coupling for the scalar fields), it would not be surprising to find some 
kind of correspondence between both theories. 

The qualitative behaviour of the theory can be studied by doing a large No 
analysis [26], [27]. The coupling X changes the Higgs - fermion coupling, and hence 
produce a modification of the gap equation together with a finite modification of the 
induced wave function renormalization constant and of the induced quartic couplings 
for the scalar fields. For physical momenta p2 < <  A s, the coupling f induces an 
explicit kinetic term 

f H = G-~,Y.~.479,HtV, H (5.2) 
/ k "  
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for the composite field 

H G (  t a d  X rd ~, a) = tneL + -~D,  tn~D eL " (5.3) 

The value of Gc may be computed by solving the self consistent equations for 
the fermion self energy a(k) = mr (1 ,  ~k2).  A nonvanishing solution is obtained if 
G > Go, with 

a 2 ' =  ~ l - x +  • (5.4) 

Hence, in the bubble sum approximation the induced wave function renormalization 
constant reads 

ZH(tt) = G'~1--~2 -J- Z~l(la) (5.5) 

while the quartic coupling reads 

~0( , )  = ~ ( , )  (5.6) 

where Z~(/~) and A0x(/z) are the values of the corresponding induced quantities when 
f = 0. These were first computed by W. Bardeen in Ref. [26], where he obtained 

while 

z~,(~) = (5.7) 

~ = ~ log - 2x + ~ -  - y  + . (5.8) 

As we anticipated, the couplings f and X produce finite corrections to the leading 
logarithmic results. If we take arbitrary values for the couplings f and X, we will 
also get arbitrary values for the renormalized couplings in the infrared. Hence, the 
generalized Narnbu Jona Lasinio model is equivalent to the Higgs Yukawa model, and 
no real signature of compositeness can be obtained from the infrared structure of the 
theory [27]-[281 . 

The results of Ref. [27] imply that once the gauge interactions effects are added, 
the generalized top condensate model is just equivalent to the Standard Model. The 
sharp predictions obtained with the ultraviolet compositeness conditions on the tenor- 
realization group flow of the renormalized couplings are only consistent with a partic- 
ular choice of the higher dimensional operators. In fact, it is impossible to determine 
the magnitude of the coupling associated with the higher dimensional operators with- 
out knowing the precise short distance dynamics leading to the effective interactions 
at the scale A. However, when the raio of A to the physical mass scale mt is very 
large, the finite corrections induced by the higher dimensional interactions are small 
compared to the leading logarithmic contributions, unless the value of their associated 
couplings is unnaturally large. 

The stability of the low energy predictions is largely enhanced once the strong 
gauge interactions are included. This is due to the action of the infrared quasi - fixed 
point in the theory, as has been shown by W. Bardeen in Ref. [26]. The results of his 
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,analysis, for A ~ 1015 Ge\'. are shown in Fig. 2. Observe that, in the range of values 
under study, both t h e  top quark and the Higgs masses are stablc under variations 
of X once the gauge and Higgs bound states interaction effects are included. These 
additional effects have been included by using the bubble approximation to compute 
the v i u e  of the renormalized couplings at scales # ~ A/5. These results have been 
used as new ultraviolet boundary conditions on the renormalization group flow of 
the relevant couplings, which run according to the the one loop renormalization 
group equations of the Standard Model. It follows from Fig. 2 that, for moderate 
xxlues of the couplings associated with the higher dimensional operators, only a small 
correction to the minimal model predictions is obtained. 
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Fig. 2: Top quark and Higgs mass shifts as a function of the numerical parazneter 
X, for a compositeness scale IX = 10 is GeV. The triangles, circles and squares denote 
the results of the NJL, ladder QCD and the full RG equations respectively [26]. 

6 Dynamical  Scenarios 

In the last section we discussed the stability of the top quark and Higgs mass predic- 
tions under the inclusion of additional higher dimensional operators. The predictions 
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are stable so far the couplings associated with these additional interactions are of 
order one. Hence, as we discussed in the last section, the values obtained in the 
analysis of Ref.[18] give the predictions for a general class of models with moderate 
values for the higher dimensional interactions couplings and a large compositeness 
scale A. This is a very beautiful property of these models, because it allows us to 
make low energy predictions without knowing the exact dynamical scenario related 
to the formation of the top condensate, so far there is a large hierarchy of scales 
between the weak scale and the compositeness scale. However, it is important  to 
inquire about  the nature of the high energy theory leading to the effective Nambu 
Jona Lasinio lagrangian at the scale A. 

The simplest dynamical scenario is to assume that the four fermi interactions 
arise as the residual effect of some heavy gauge boson interactions at the scale A [29], 
[30]. This is based in the fact that a current current interaction like 

1 c.i^....i .~/^.~,..~ (6.1) 
£~ " 2m~ 2 L L /  A L  X R !  A R  

where rna is some heavy boson mass, may be rewritten, after applying a Fierz trans- 
formation, like 

1 • " 

"~ ~ X n X L  £ , -  . ~  X~X~ -~ ' (6.2) 

The easiest way of recovering the colour factors is hence to consider an SU(3) gener- 
alization of the Standard Model gauge group symmetry [30]. Thus, let us consider a 
theory, which at scales tt >> rna is symmetric under a symmetry group 

G: SU(3), × SU(3)~ x SU(2)L x U(1)y (6.3) 

and we incorporate all the quark and leptons of the Standard Model, with the usual 
quantum numbers under SU(2)L x U(1)y. In order to break the symmetry group 
to the standard model one, we introduce a Higgs field ff transforming as a (3, 3) 
under SU(3)1 x SU(3)2 and which acquires a vacuum expectation value < (I) >_~ 
diag(M,M,M). 

We will assume that all leptons are singlets under the SU(3) groups transfor- 
mations, while the quarks transform as triplets. We will furthermore assume, for 
simplicity, that all quarks which couple to one of the SU(3) gauge bosons do not 
couple to the other. After symmetry breaking we will have two vector mass eigen- 
states: A massless one, G. ,  identified with the gluon and a massive one, B . ,  which 
we will call, following Ref.[30], "coloron ": 

AI,. = cos 8 G,  - sin 8 B~ 

A2,~, = sin 8 G.  + cos 8 B~, (6.4) 

In order to preserve the observed QCD current we have to demand that g3 = hi cos 8 
and g3 = h2 sin 8, where hi is the SU(3)i gauge coupling. The effective coupling of the 
fermions to the massive gauge boson is equal to g3 cot 8 for those ones coupled to A2,. 
and g3tan8 for those ones coupled to A~,~,. From Eq. (6.1) - (6.2), it is clear that if 
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we want only the top quark to have an effective four Fermi coupling above its critical 
value, we have to assign the quantum numbers of the quarks in a way that does not 
respect the family structure of the standard model. One possible assignement is if 
the left handed top - bottom doublet eL and the right handed top quark transform 
as triplets under SU(3)2 and as singlets under SU(3)1, while all other quarks and 
transform as triplets under SU(3)1 and as singlets under SU(3)2. This choice is 
not anomaly free, but anomalies may be cancelled by adding two additional heavy 
quarks, which do not affect the low energy dynamics of the theory [30]. In addition 
we require tan0 < <  1 to obtain the desired hierarchy between effective four Fermi 
couplings. Ignoring 1/Nc corrections, the top - bottom - coloron interactions result 
in effective four Fermi interactions, just like in the minimal top condensate model, 
with a four Fermi coupling 

G "2_ g~ co t2 8 
MS , (6.5) 

where Ma = x / ~  + h~ M, is the coloron mass. If these four Fermi interactions were 
the only relevant ones, the model would just reduce to the minimal top condensate 
model. The gap equation for the top quark mass would require a fine tuning of the 
effective coupling so that 

~ ~3(mc) ~ 1 (6.6) c o t  2 8 

which, for Nc = 3, and for large values of ma, is consistent with our assumption 
on tan 8. The interesting question is what are the modification to this picture which 
are obtained when, instead of replacing the color0n effects by azi effective four fermi 
coupling, we compute the gap equation and the scalar propagator in the presence 
of the strongly coupled, spontaneously broken, gauge interactions. This was done 
in l~ef [30], with somewhat surprising results. The effects were not only small, but 
almost negligible. In fact, the modifications are equivalent to those ones which would 
be obtained through the addition of higher dimensional operators with an associated 
coefficient X ~ 1/8, showing that at least in this class of models, the results of Ref. 
[18] are recovered. 

Althogh the SU(3) generalization to the standard gauge group is the most natural 
one regdrding the color degrees of freedom, a model based on an U(1) extension has 
been proposed [31]. The idea is to let the quarks and leptons to transform with 
asymmetric quantum numbers under the group 0"1(1) x U(1)2, just like we did in the 
SU(3) case, and to have the usual quantum numbers under SU(3)c x SU(2)L. The 
advantage is that the quantum numbers may be selected so that only < {t > 5  0 
while the anomalies of the theory are cancelled without the need of introducing 
additional heavy particles in the spectrum. The disadvantage is that, if the U(1) 
currents transform as color singlets, the effective four fermi couplings differ from the 
ones of the model of Ref. [18], but they are given by Eq. (6.1), where i and j are 
color indices. It is easy to see that, in this case, no large Nc expansion for the gap 
equation is possible, since the quark of a given color receives a mass rn~ ~ <  ¢ ~  > 
where no sum over a is understood. One of the aims of Ref.[31] is the solution to the 
fine tuning problem by lowering the compositeness scale to values of the order of a 
few TeV. For these values of A and with no large Nc expansion at hand, all dynamical 
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calculations have to rely on a truncation of the complete Schwinger Dyson equations, 
being difficult to estimate the accuracy of the approximation done to evaluate the 
phenomenological predictions of the model. 

A qualitative analysis of the U(1) extended model has been done in Ref [31]. If 
the mass of the U(1) gauge boson is very large compared to the weal¢ scale, the low 
energy predictions are expected to be equivalent to the ones obtained in the minimal 
top condensate model. If, instead, the compositeness scale is pushed not far away 
from the weak scale, the phenomenology of this model is rather different from the 
standard model one. In fact, apart from scalar Higgs particles, additional bound 
states are expected to appear, with masses close to the weak scale. These additional 
bound states can have important phenomenological consequences, like a modification 
of the p parameter value. If, as suggested in Ref. [31], a negative correction to the p 
parameter appears, the experimental upper bounds on mt would be weaker than in 
the standard model case. In addition, since for values of A close to the weak scale 
the leading logarithms are of order one, higher dimensional operators can become 
relevant in this case, lowering the values for mt in comparison to those ones obtained 
in the minimal model for the same values of A. In spite of their appeal, reliable 
computations will be needed to prove the validity of these attractive conjectures. 
An interesting feature of this model is the necessity of a strongly interacting U(1) 
theory, which could make connection between the top condensate models and the 
conjectured nontrivial ultraviolet fixed point of the U(1) theory coupled to fermions 
[32]. 

It would be interesting to find an embedding in which quarks and leptons would 
couple to the additional gauge fields in a way which preserves the usual family replica- 
tion of quantum numbers [29]. In this case a 3 x 3 matrix A4 of up quark condensates, 
with equal entries in all the elements .Mij will appear, in a flavor democratic way. 
This matrix can be diagonalized by a rotation over the flavor indices. The diago- 
nalized matrix has only a nonvanishing entry, which could be identified with the top 
quark condensate, and a massive quark to be identified with the top quark. A model 
based on this idea is presently under investigation [42]. 

7 Conc lus ions  for the  M i n i m a l  M o d e l  

In the minimal model, the breakdown of the electroweak symmetry is induced through 
a mechanism analogous to the BCS mechanism in condensed matter physics. The 
elementary Higgs field is replaced by effective attractive short range interactions 
which result in a propagating scalar bound state once the coupling is tuned to its 
critical value. The infrared structure of the model is equivalent to the standard 
model one. In fact, the top condensate model is just a particular limiting case of 
the Standard Model, which is reached for those values of the renormalized couplings 
which are consistent with the renormalization group trajectories associated with the 
triviality bounds on the top quark mass. Hence, a strong Yul~wa coupling at the 
compositeness scale A appears as a clear signature of compositeness of the Higgs state. 
The model provides sharp predictions for the top quark and Higgs masses, due to the 
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existence of an infrared quasi - fixed point. For compositeness scales A = 10 a° - 1019 
GeV, the top quark mass mt ,~ 230 GeV and mH ~-, 250 GeV, The model is attractive 
not only because of its simplicity, but also because it gives a natural explanation for 
the relatively large value of the top quark mass. 

The predictions of the Minimal Top Condensate Model can be modified by assum- 
ing the presence of additional higher dimensional interactions at the compositeness 
scale A. However, when there is a large hierarchy of scales between the effective 
cutoff and the weak scale, A >> mr, the low energy results are dominated by the large 
logarithmic corrections induced in the minimal gauged Nambu Jona Lasinio model, 
unless the couplings associated to the higher dimensional interactions are much larger 
than one. The presence of the infrared quasi fixed point enhance the stability of the 
low energy predictions under the variation of these additional couplings. Hence, the 
predictions of Ref. [18] correspond to a general class of models in which the effective 
theory at the compositeness scale A is characterized by attractive four - fermi inter- 
actions plus additional higher dimensional interactions with associated adimensional 
couplings with values of order one. In this sense, the results of Ref. [18] provide the 
most natural values for the top quark and Higgs masses within this scheme. This is 
in agreement with the results obtained in the low energy approach of Ref. [33]. 

Within the minimal top condensate model, the top quark mass value is somewhat 
larger than the preferred experimental values, coming from the p parameter measure- 
ments and direct top quark searches, 89 GeV < mt < 180 GeV [2]. If the top quark 
mass is indeed in this range of values, there are good chances to measure it at the 
Fermilab Tevatron within the next five years. If, instead, the Tevatron search for the 
top quark proves to be unsuccessful, the range of values predicted by the minimal 
top condensate models will remain as an interesting open possibility. 

We presented different proposed dynamical scenarios for the generation of the 
effective interactions at the scale A. These are based on extensions of the standard 
model, to a strongly coupled gauge theory, whose symmetry group is spontaneously 
broken to SU(3)c x SU(2)L  x U(1)r at energies far above the weak scale. The four 
Fermi interactions appear through a Fierz transformation of the current - current in- 
teractions associated to the massive gauge boson sector. To generate the hierarchy of 
masses between the fermions of the first and third generation, an asymmetric assigne- 
ment of quantum numbers under the additional gauge symmetry group is required. 
It would be interesting to find an embedding of the enlarged symmetry group in a 
somewhat larger symmetry group structure, which could give a natural explanation 
to this seemingly arbitrary assignement. In addition, unless the compositeness scale 
is pushed to values close to the weak scale, the gauge couplings have to be adjusted 
very precisely in order to generate the required hierarchy of scales. This is nothing 
but a refined version of the fine tuning problem. 

A possible solution to the phenomenological problems related to the present ex- 
perimental bounds on the top quark mass may be given by enlarging the model to 
include a fourth generation. In view of the present experimental bounds on the num- 
ber of light neutrino families, a mechanism to generate masses for the neutrinos of the 
fourth generation should be incorporated. This can be done in a natural way, includ- 
ing new effective interactions for the fourth generation of neutrinos, while pushing 
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the compositeness scale to be of the order of 10 TeV [34]. The fourth generation of 
quarks become heavy, but no effective bound on the top quark mass appears within 
this model. 

There have been several additional extensions of the minimal model which have 
been studied in the literature, and that we will not discuss in detail. Two Higgs 
doublet models were analyzed in Refs. [35]-[36]. In Ref [38], a model with horizontal 
gauge symmetry  was analyzed. The top quark mass predictions within this model 
resemble the ones obtained in Ref.[18]. In Ref.[37], it was shown that,  if a somewhat 
more general set of effective four fermi interactions is included, the first and second 
generation of fermions can acquire masses in a radiative way, explaining not only the 
heaviness of the top quark, but also the hierarchy of masses, rnt >> me. In addition, 
the top quark mass value can be considerably lower than the one obtained in the 
minimal model. The price to pay is the appearence of several scalar bound states, 
each of them arising through the fine tuning of a four fermi coupling to its critical 
value. It will be difficult to find a dynamical scenario in which these fine tunings may 
arise in a natural  way. 

Perhaps the simplest solution to the naturalness problem, keeping only three gen- 
erations and a large hierarchy between the compositeness and the weak scales, relies 
on a supersymmetric extension of the model [39] - [40]. Although in a supersymmet- 
ric extension additional elementary scalar particles appear in the spectrum, they are 
not put by hand but they appear naturally through the requirement of preserving 
the global supersymmetry of the theory. Within the minimal supersymmetric top 
condensate model, the chiral Higgs multiplets appear as bound states of the third 
generation of quarks and their supersymmetric partners, without the necessity of fine 
tuning. In fact, in a softly broken supersymmetric theory the quadratical divergen- 
cies, which lead to the fine tuning problem in the Standard Model, are absent. As 
in the minimal case, the top quark mass values are strongly focussed to an infrared 
quasi fixed point, which is reached at somewhat lower values of the top Yukawa cou- 
pling than in the minimal case. In addition, the top quark mass is proportional to 
only one of the two Higgs vacuum expectation values contributing to the Z ° mass, 
and hence can acquire significantly lower values than in the minimal case [40]. The 
SUSY extension of the minimal top condensate model will be the subject of the talk 
of M. Carena [41]. 
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A b s t r a c t  

I analyze the minimal supersymmetric extension of the standard model, in 
the case in which the electroweak symmetry breakdown relies on the formation of 
condensates involving the third generation of quarks and their supersymmetric 
partners. Using Schwinger-Dyson equations as well as renormalization group 
techniques, I compute the mass of the top quark as a function of the ratio R of the 
Higgs vacuum expectation values, for different values of the compositeness scale A 
and the soft supersymmetry breaking scale A s. Considering the renormalization 
group evolution of the scalar quartic couplings, I examine the particle spectra 
of the ttiggs sector in the general case in which two light Higgs doublets appear 
in the low energy theory. The neutral CP even and charged tIiggs masses are 
given as a function of R and the CP odd Higgs mass, for fixed values of A and 
A s. For A = 1016 GeV and AS = 1 TeV, the characteristic values of the top 
quark mass are 140 GeV < mt < 195 GeV, while the lightest CP even mass 
must be below 135 GeV. The m, predictions are only slightly dependent on As. 
Moreover, in the dynamical scheme under study, the top quark and Higgs masses 
lie at the edge of their triviality bounds, setting constraints on the range of mass 
parameters consistent with possible grand unification scenarios. 

1 I n t r o d u c t i o n  

The s tandard  model  [1] provides a very good unders tanding of the s t rong and elec- 
t roweak interactions and, so far, it has wi ths tood all the exper imenta l  onslaughts.  How- 
ever, there are still a great  number  of open questions, which need to be answered. In 
part icular ,  I would like to concentrate on the origin of masses of the fundamenta l  ex- 
citations in the model.  All these masses arise out of the p resumpt ion  tha t  the scalar 
Higgs boson acquires a nonvanishing vacuum expectat ion value inducing the sponta-  
neous breakdown of the electroweak symmetry.  Since the existence of the Higgs particle 
has not been proven until now, many  other  al ternat ive explanations for the physical 
mechanism responsable for the electroweak symmet ry  breaking have been explored in 
the l i terature.  Most of the proposed models require the existence of a host of new par-  
ticles, which have not yet been experimental ly observed. In this regard,  the top quark 
condensate  models have the beau ty  of relying only on the spec t rum of particles which 
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have already been detected. The basic idea, first suggested by Nambu [2], that the elec- 
troweak symmetry breaking could be dynamically generated through attractive fermion 
self interactions, was then studied by Bardeen, Hill and Lidner [3], and in a somewhat 
different presentation by Miransky, Tanabashi and Yamawaki [4], as well. Within the 
top quark condensate models the Higgs sector is replaced by the interactions between 
the fermions, and the scalar Higgs appears as a composite particle. In fact, based on 
the increasing experimental lower bound on the top quark mass, it has been realized 
that the top quark may be sufficiently heavy as to induce the formation of a condensate 
which catalyses the electroweak symmetry breakdown. 

The physicM consequences of the minimal dynamical electroweak symmetry break- 
ing mechanism have been discussed in great detail by C. Wagner in the previous talk 
in this workshop [5]. Thus, I shall review very succinctly the main results and short- 
comings which lead to the supersymmetric extension as an interesting alternative. The 
SU(3)c x SU(2)L x g(1)y gauge invariant Nambu-Jona-Lasinio model [6] considers effec- 
tive four fermion interactions between the dynamical quarks and leptons of the model. 
These interactions are thought to describe the residual effect of some unknown high en- 
ergy dynamics which becomes relevant above the high energy scale A, which acts as an 
effective cutoff for the low energy theory. Due to its heaviness, which implies a relatively 
strong coupling to the composite Higgs field, the top quark plays an essential role in 
this dynamical scenario. The mechanism of the dynamical breakdown of the electroweak 
symmetry can be minimally described by keeping just an effective four fermion inter- 
action, with coupling constant G, involving only the quarks of the third generation [3], 
[4]. The four fermion coupling constant acquires a critical value, Go, which separates 
the region in coupling constant space in which the chiral SU(2)L x U(1)y symmetry is 
preserved, from that one in which this symmetry is broken. In the broken phase a top 
condensate forms, < {t > 7 ~ 0, inducing mass for the fermions and the electroweak 
bosons. When the four fermion coupling is close to its critical value, a composite scalar 
Higgs appears at low energies as a new dynamical degree of freedom. The physical 
neutral component of the scalar Higgs field is a t{ bound state, while three composite 
Goldstone bosons appear as a result of the gauge symmetry breakdown. The massless 
Goldstone bosons are then absorved by the electroweak gauge bosons through the usual 
Higgs mechanism. Sharp predictions for the masses of the physical Higgs boson and the 
top quark appear in the above dynamical scheme. 

The gauged Nambu-Jona-Lasinio model is in the same universality class as the stan- 
dard model and, in fact, for A >> Mz this model can be viewed as a particular limiting 
case of the Glashow, Salam and Weinberg theory [3]. In order to get realistic phe- 
nomenological predictions for the top quark and Higgs masses, the four fermion coupling 
must be fine tuned very precisely to its critical value. Considering this as an effective 
theory generated by an unknown high energy dynamics, it will be difficult to imagine 
a dynamical scenario which provides naturally such a fine tuning. In addition, for a 
compositeness scale of the order of A _ 1015 GeV, the characteristical value for the 
top quark mass in the standard model with minimal dynamical electroweak symmetry 
breaking is mt "~ 230 GeV [3]. From the present measurements of the p parameter [7], 
it follows that, such value of the top quark mass may be too large to fit within the 
experimental data. 

The minimal supersymmetric extension of the composite Higgs model provides so- 
lutions to the above problems [8], [9]. In fact, in the supersymmetric extension the 
quadratic divergences present in the standard model are cancelled, therefore, no fine 
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tuning of the four fermi coupling constant or, in general, of the Higgs mass parameters 
is required [10]. Moreover, within the supersymmetric extension, lower values for the 
top quark mass are predicted [9]. This is due to the fact that there is an infrared quasi 
fixed point which governs the value of the top quark mass, while determining the low 
energy value of the top quark Yukawa coupling [11]. In the supersymmetric model, the 
infrared quasi-fixed point yields a low energy value for the top quark Yukawa coupling 
which is lower than the standard model one [8]. Furthermore, considering the case in 
which the two scalar Higgs doublets have nontrivial vacuum expectation values, since 
both give contributions to the Z ° mass, their individual vacuum expectation values are 
lower than in the standard model case. This implies that the value of the top quark 
mass may be significantly lower than that computed in the framework of the top quark 
condensate standard model [9]. One shortcoming of the supersymmetric extension is 
to presume the existence of a host of fundamental particles. However, such new parti- 
cles are the superpartners of the standard fundamental excitations, thus, they appear 
naturally through the requirement of preserving the global supersymmetry of the model. 

An interesting aspect of the composite Higgs scheme for the dynamical breakdown of 
the electroweak symmetry is that the low energy values of the top quark Yukawa coupling 
are consistent with the renormalization group trajectories associated with the triviality 
bounds on this quantity [3], [9]. Hence, the top quark mass values obtained within this 
model can be understood as upper bounds' for this mass, in any theory in which, apart 
from the supersymmetric partners, no new physics appears up to the compositeness 
scale A, thus, yielding constraints on the range of mass parameters consistent with 
possible GUT scenarios [12]. 

In section 2 1 shall introduce the minimal supersymmetric extension of the standard 
model with dynamical symmetry breaking. I shall use the Schwinger-Dyson equations 
technique, in section 3, to explore within the bubble sum approximation the critical 
structure and the low energy dynamical behavior of the model. I shall then devote 
section 4 to compute, by using renormalization group techniques, the corrections gener- 
ated after the inclusion of the gauge field interactions. At the same time, I shall analyze 
the modifications to the top quark mass predictions which are induced by introducing 
the bottom quark Yukawa coupling effects. The top quark mass will be evaluated as 
a function of the ratio R of the vacuum expectation values of the two scalar Higgs 
doublets, for different values of the effective cutoff scale A and the soft supersymmetry 
breaking scale As. I shall then compute, in section 5, the complete Higgs spectrum as 
a function of the explicit scalar mass terms and the radiatively corrected scalar quartic 
couplings, which are determined through their renormalization group flow. The top 
quark mass will be also computed as a function of the lightest CP even Higgs mass for 
different values of the compositeness scale, the supersymmetry breaking scale and the 
tree level value of the neutral CP odd Higgs mass. Finally, in section 6 I shall present 
the triviality bounds on both the top quark and the lightest CP even Higgs masses as a 
function of the ratio of the vacuum expectation values R, and for various values of the 
CP odd mass. It is the aim to achieve some more general conclusions about possible 
grand unified scenarios and the kinematical accesibility of a new decay mode for the 
lightest CP even Higgs particle. I reserve section 7 to summarize the main results. 
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2 S u p e r s y m m e t r i c  E x t e n s i o n  of  the  Top Quark Con- 
de nsa te  M o d e l  

The SU(3)c x SU(2)L x U(1)y invariant gauged supersymmetric Nambu-Jona-Lasinio 
model with explicit soft supersymmetry breaking terms [9], [13] - [15] considers the 
dynamics associated with the quark chiral superfields condensation. Written in terms 
of the two composite ehiral superfields//1 and H2, the action of the model at the scale 
A is given by, 

FA ----- FyM + f dV  [(~eaV'aQ + T °e-=vrT C + B ° e-=VB/~ C] (1 - A=O=g a) 

+ fdV&e'V'  H1(1 -- M~182~) 

+ Boe -g oH Q'r (1 + Aoe )) 

(2.1) 

where Q is the SU(2)L doublet of top and bottom quark chiral superfield multiplets, 
T ° and B e are the SU(2)L singlets charge conjugate top and bottom quark chiral 
multiplets, respectively, and dV = d4xd82dO 2 and dS  = d4xd82 are the superspace 
integration measures. •YM includes the usual supersymmetric gauge field kinetic term 
as well as the supersymmetry breaking gaugino mass term, and 

1 - i l  1 VQ = lg3Ga'~az + ~g2W o- -b -~glY, 

VB = ~gaG~A ~ 
1 

- -  ~ g l  Y,, 2 

2 VT ---- lg3Ga'~az "{- "~ gl Y, 

1 - i l  1 i1:, VH1 = ~g2W a - "~gl , (2.2) 

describe the quark and Higgs multiplets interactions with the SU(3)c x SU(2)L x U(1)y 
gauge fields. A 2 and M21 are explicit soft supersymmetry breaking scalar mass param- 
eters, while A0 and B0 provide two soft supersymmetry breaking terms proportional 
to the scalar trilinear and bilinear terms of the superpotential. In the above, only the 
Yukawa coupling related to the top quark has been introduced. The most general ver- 
sion, however, should include Yukawa type interactions for all the quarks and leptons 
of the theory. As a matter of fact, in section 4 I shall extend the analysis including 
also the Yukawa coupling associated with the bottom quark. Nevertheless, the essential 
qualitative features of the quark multiplet condensation are accurately described in this 
first simplified version. 

In Eq. (2.1), the chiral superfield/-/2 acts as a Lagrange multiplier enforcing the 
relation 

Hi(1 + BoB 2) = ~ooQTC(1 + Ao82). (2.3) 

Once the auxiliary chiral superfields H1 and/ /2  are integrated out, which results in the 
replacement of//1 by its equation of motion, the gauged supersymmetric Nambu-Jona- 
Lasinio model just in terms of the gauge and quark chiral superfields is recovered. It is 
instructive to write the above action in components, after integrating out the auxiliary 
F fields [16] of each chiral superfield, 
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- (mo:l- 4%0'  + ...], (2.4) 

where only the terms relevant in deriving the Schwinger-Dyson equation for the top 
quark mass (see section 3 below) have been retained, ff represents any scalar-quark 
(squark) field, while ¢¢ stands for the corresponding quark field. In the equation above, 
the usual kinetic term for the squarks and quarks fields, as well as a kinetic term for 
the scalar Higgs HI appear. There are also the explicit soft supersymmetry breaking 
scalar mass terms and a mass term for the scalar Higgs H2, which comes from the 
replacement of the auxiliary field F of the chiral superfield H1 by its equation of motion. 
The Yukawa interaction of the top quark with the composite scalar field//2 arises out 
of the trilinear term in the superpotential, while the two quartic terms couple the 
scalar Higgs H2 to the squark fields 0 and ~c ,  and appear after integrating out the F 
components of the corresponding quark chiral superfields. Finally, the effective trilinear 
coupling 6 -- A0 - B0 comes partly from the original soft supersymmetry breaking term 
proportional to the scalar trilinear term in the superpotential and partly from the scalar 
bilinear counterpart. More explicitly, the B0 contribution has been obtained after using 
the Euler Lagrange equation of motion for the scalar field H1, defined by the constraint 
coming from the F term of the superfield H2, which acts like a Lagrange multiplier. 
As it will become clear later, the inclusion of a nonvanishing value of the parameter 
is essential in order to generate nontrivial vacuum expectation values for both neutral 
scalar Higgs, without inducing an unacceptable light axion in the theory [17]. From the 
Euler Lagrange equations it follows, 

gTo ~ C  gTo ~ ... 
H1 = ~"~-mo ' H~ = ~00 R~/~L Jr (2.5) 

In general, the Higgs superfields appear as bound states of the quark chiral superfields. 
Observe that integrating out the static scalar field/-/2, the usual four Fermi interaction 
with coupling strength G 2 2 = gTo/mo is obtained. The same as in the standard model 
case, there is a critical value of the four fermion coupling, Gc, above which a dynamical 
mass for the top quark is generated. As I shall show in the next section, Gc may be 
determined in a self consistent way by using the Schwinger-Dyson equations for the top 
quark mass. 

3 T h e  B u b b l e  S u m  A p p r o x i m a t i o n  

In the last years, much effort has been devoted in using the Schwinger-Dyson equa- 
tions to perform a self consistent summation of diagrams in different approximations 
in quantum field theory [4], [13], [18], [19]. In particular, in the framework of the top 
quark condensate model, the Schwinger-Dyson equation for the top quark mass has been 
computed in the large number of colors (No) limit, for vanishing strong gauge coupling 
constant [3], [8] [9]. This is usually called the bubble sum approximation. In the frame 
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of the minimal supersymmetric standard model under study, the diagrams contributing 
to the top quark mass self consistent equations are depicted in Fig. l a  and yield, 

*°'~ ~'~'~ ~ ~ Q L~o~ ~\gTo//(mt/gTo) 
- I-Tq\H2/ 21 

1/m21H 2 1/m~; H 2 "@ 1/mol H2. 

mt = z + ~ + ~ _ 

gTo gTo gTo 

m~ = A 2 + 

Q 9 
H2 \ \  / /H2  

2 

gTo 

= &2 + m 2 
t 

H21 . , /  gTo ¢\ /' 

(~ gTo \ / mT= = -I ~-  
5 # 5 GM~, 

Fig. h The Schwinger-Dyson equations in the bubble sum approximation for a) the top 
quark mass, b) the scalar quark masses and c) the left-right mixing squark mass parameter. 
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_ 2rntGNc d4 p 
mt 16~r 4 (p2 + mr2) [(p2 22 4 + m~) - mQrol)  j 

6GNc f d4 rn2QrC (3.1) 
+1-~4 J P[(p2 + rn~)2 _ m~T° ]" 

The first two terms in expression (3.1) are the fermion and squark contributions, while 
the last term comes from the left-right squark loop induced through the soft super- 
symmetry breaking term 5. In the above, the usual supersymmetric cancellation of 
the quadratic divergent terms takes place. From the explicit expression of mr, it follows 
that the scalar quark mass, m~, and the left-right mixing squark mass parameter, mQTC, 
need to be computed. The superfield propagator was first derived in Ref. [20] and then 
generalized by the inclusion of the 5 term in Ref. [9]. The squared squark mass is given 
by the squared of the explicit soft supersymmetry breaking mass contribution plus the 
squared of the top quark mass, as is shown in Fig. lb. The value of m~Tc is also 
determined by the corresponding Schwinger-Dyson equation depicted in Fig. lc. It 
reads, 

[ ( )] aM}, Nc log (3.2) 
= mS o 1 +  32.  + A )2 mSTo . - 1 ,  

where the logarithmic term is generated by the explicit soft supersymmetry breaking 
term associated with the scalar field//1. 

For a nontrivial solution of the Schwinger-Dyson equations, the gap equation[9] 

- - - ~ 7 -  log  ~2t2 • ) + 2 - 

(3.3) 
must be fulfilled. In the limit 5 --+ 0, Mbl ~ 0, for example, the critical value for 
the four Fermi coupling, above which a nonvanishing value for the top quark mass is 
dynamically generated, is given by 

NcA2 log . (3.4) 
G 5 1 -  8~. 2 A-~ 

Furthermore, in the limit in which all the supersymmetry breaking terms vanish, the 
value of Gc diverges and, therefore, no mass for the top quark can be dynamically 
generated. In the presence of nonvanishing supersymmetry breaking terms, instead, 
the quadratic dependence of G~ 1 on A is replaced by a mild quadratic dependence on 
the soft supersymmetry breaking scales. The compositeaess scale appears only in the 
logarithm and, hence, the solution to the gap equation gives always a critical value 
which is of the order of the inverse of the largest soft supersymmetry breaking scale. 
Thus, as I already said, no fine tuning is necessary in this model. 

In the low energy regime, a gauge invariant kinetic term for the chi ral superfield H2 
is induced through radiative corrections. In the bubble sum approximation it may be 
determined by computing the contributions to the H~ chiral superfield self energy de- 
picted in Fig. 2. The scalar self energy results in a kinetic term and a negative squared 
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,@, 
I i 

\ \ v / / _  gTo AO 
YH, - - "  1_12 "t ~ _  H + H 2  H2 gTo 2 

~,gTo Ao ~/ / _ _ _  

"i "c, ~ 

gTo Z / \l.gro 

~%--- gTo / ~gro 
FH2 t / I~ FH2 

T ~ 

-t- 
\ 

gTo AO / ~gTo , 
H2 -~ / FH2 

• 1 ~ 

+ 

+ gTo / ~gTo Ao 
FH2 \ ~ /  H2 

T ~ 

Fig. 2: The Feymann diagrams contributing to the induced kinetic term of the Higgs chiral 
superfield H2 in the bubble sum approximation. The chiral superfieid self energy is given by 
~H2 + ~'~"2 + ~F2. 
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mass term proportional to the supersymmetry breaking mass parameter A 2, both mul- 
tiplied by a logarithmically divergent wave function renormalization factor Zn~. The 
Higgsino acquires a kinetic term with the same wave function renormalization constant 
Zn~, as implied by supersymmetry. Finally, computing the terms which depend on the 
auxiliary field Fn~, the induced kinetic term can be written like [9] 

Zu2 / dV[-I2"e2V'2n2(1 -4- AoO 2 -4- Ao~ 4- (2A 2 + A~)02t}2), (3.5) 

where the/-/2 wavefunction renormalization constant, at a normalization scale ft is given 
by, 

g~o Arc log (3.6) 
ZH2 = 16~r 2 ~-~ 

and VH2 = VH1 -4-glY. The wave function renormalization constant is normalized so that 
at the scale # = A the gauged supersymmetric Nambu-Jona-Lasinio action, Eq. (2.1) 
is recovered. Hence, ZH: ~ 0 when # ~ A, which is usually called the compositeness 
condition. Thus, at the compositeness scale A, the previous kinetic term, Eq. (3.5), 
tends to zero and the chiral superfield H2 has no independent dynamics. For energies 
lower' than the compositeness scale, instead,//2 appears as an independent dynamical 
degree of freedom. 

the chiral superfield H2 by H2(1 -A002)/Z9/~2, so that it has a canonically Rescaling 
normalized kinetic term, the low energy effective action is given by 

Fz = FyM + f dV [Qe2V~Q + Tce-2vT'T c + B e e-2v'.B c] (1 - A202~) (3.7) 

+ j - 

- -  [j dSeij ( (xmH1H2.1 -~ - j  + ~02) - htTC'5if-IJ'~w 2 ! + J dVfI2e2VS'2H2(1 + 2A20202). 

where the renormalized mass and top quark Yukawa coupling, 

m = .%/zv~,  h ,  = gT0/zvr~ (3.8) 

have been defined. Thus, within the bubble sum approximation and for Nc = 3, the 
top quark mass, mt= ht(mt) v2 is determined by the expression, 

~ log ~ = ,~v~ (3.9) 

Observe that, since m0 and gr0 have finite values, the renormalized couplings, Eq.(3.8), 
diverge at the scale A. 

Once the chiral superfield H2 is canonically normalized, from the effective action 
Eq. (3.7) it follows that the effective supersymmetry breaking term proportional to the 
bilinear term of the superpotential is B -- ~, while the trilinear counterpart vanishes, 
A = 0. In addition, the induced explicit supersymmetry breaking mass term for the 
scalar field/-/2, M]/2 = - 2  A2, is negative. Therefore, it may generate a nontrivial mini- 
mum for the scalar potential, even when the supersymmetry breaking term B vanishes 
[10]. However, a nontrivial value of B is crucial to generate a vacuum expectation value 
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for the scalar Higgs HI, which will then give masses to the bottom quarks and leptons of 
the theory. The effective values of these supersymmetry breaking terms can be under- 
stood by analyzing their renormalization group flow. In the bubble sum approximation, 
the renormalization group equations for the supersymmetry breaking parameters read, 

dM~ 2 
NcYt(m2Q + rn~v + M 2 dt - -  H2 + A2) 

dA I dB 
- 2NvYtA - 

dt 2 dt 
(3.10) 

where Yt -- (ht/4rc) 2, t -- log(A/#) and rn~ _= A 2 -- m~c axe the explicit soft super- 
symmetry breaking mass parameters for the squark fields that appear in the original 
action. From the above expressions, it is straightforward to see that the fulfillment of 
the compositeness condition, Yt-I(A) = 0, together with the requirement of finiteness 
of the soft supersymmetric breaking parameters, implies the cancellation at all energy 
scales of A and of the sum of the squared explicit supersymmetry breaking mass terms 
for the squarks and the / /2  scalar field. Although the above cancellations at all scales 
are just a property of the bubble sum approximation, it is important to remark that 
the same cancellations at the scale A are a prediction of the model. 

4 T h e  Inc lus ion  of  G a u g e  Interact ions:  R e n o r m a l -  
izat ion  G r o u p  Analys i s  

The analysis performed in the above section gives a proper qualitative description of 
the dynamical behavior of the model. However, in order to incorporate the effects of 
the gauge interactions, it is necessary to go beyond the bubble sum approximation. 
Instead of computing gauge field corrections and higher order in 1~No effects, a better 
alternative to obtain the low energy physics is to make use of renormalization group 
techniques, which provide an efficient method of summing an infinite set of diagrams 
[3], [8], [9], [21]. The renormalization group evolution of the running couplings contains 
just the leading logarithmic contributions. However, at scales # much smaller than 
the effective cutoff of the theory, the only relevant contributions are expected to arise 
out of such leading logarithmic terms. The full renormalization group equations of the 
supersymmetric standard model [22], which are needed to compute the value of the top 
quark mass are, 

da3 
3 -2-° 

d~ 47: 

dt 47r 
dal 

-- 11 a ~  
dt 4~r 

dYt 
d t -- Yt(~&3+35~2- [ -~9~51-6Yt -Yb)  

dYbdt ( 3  ~7- ) = Yb 5 3  + 352 -[- :0~1 - -  6Yb - -  Yt (4.1) 
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with al = 47ro7~ = g~/47r and Yb = (hb/47r) 2. The above renormalization group equations 
provide the proper renormalization group flow for scMes # below A and above the soft 
supersymmetry breaking scale As. 

To compute the value of the top quark mass it is necessary to determine the value of 
the top quark Yukawa coupling at the energy scale # = mr, which can be obtained using 
the renormalization group evolution, after defining the high energy value of ht 'by the 
appropriate boundary condition of compositeness. Moreover, the boundary conditions 
for the gauge couplings have to match their low energy experimental values. However, 
in general, the characteristic soft supersymmetry breaking mass scale is expected to be 
larger than the electroweak scale. Thus, the low energy effective theory below As is 
equivalent to the standard model with one or two Higgs doublets, depending on the 
values of the mass parameters appearing in the scalar potential. As a result, the renor- 
malization group evolution of the running couplings at scales # below As is properly 
determined by the solutions to the standard model renormalization group equations 
which are given by [11], 

d ~ =  7 ~  
dt 47r 

dt 47r 

dt 47r 
dYt = Yt (_2_~& 3 + 9 .  17.  9y~_ 

dt = Yb & a + ~ a 2 +  & , - ~ Y b - 2 Y t  ) ,  (4.2) 

where f12 = 3(19/6), fll = 7(41/6) and orb = st = 1(3) if there are two (one) light scalar 
Higgs doublets in the spectrum. 

As far as there is a huge hierarchy of mass scales, A >> Mz,  the existence of an 
infrared quasi-fixed point of the top quark Yukawa coupling allows a first rough estimate 
of its low energy value. In fact, if the supersymmetry breaking scale is of the order of the 
electroweak scale, the supersymmetric renormalization group equation for the top quark 
Yukawa coupling yields h t ( i z )  ~- ~ ga(Mg). Thus, considering mt ~- ht(Mz) v2, 
the top quark mass expression is given by, 

R 
m, _~ h , ( M ~ ) ~ - -  (4.3) 

x/1 + R 2 

where M~ = (g~ + g~),2/2 and hence ,  = ~ + vl -~ 173.5 aeV, implying an approx- 
imate value 

R 
mt ~- 196 GeV x/1 + R 2J (4.4) 

Therefore, for values of the ratio R --- 1, it is possible to obtain top quark mass predic- 
tions which are significantly lower than those computed in the standard top condensate 
model. 

Considering the running of the Yukawa and gauge couplings determined by their 
renormalization group equations, it is possible to compute much more precisely the 
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value of the top quark mass [9]. The numerical integration is performed using both 
set of equations (4.1) and (4.2), while imposing the continuity of the running couplings 
at the scale # = /ks. The boundary conditions for the gauge couplings are chosen 
to be a3(Mz) = 0.115, a2(Mz) = 0.0336 and oq(Mz) = 0.0102, which are consistent 
with present experimental constraints [7]. For the top quark Yukawa coupling the  
compositeness condition Yt-I(A) = 0 is required, while for the bottom quark Yu!~wa 
coupling, the boundary condition is determined through the experimental value of the 
bot tom quark mass. In fact, the low energy value of hb, computed at # = mb, is given 
as a function of R and considering mb ~ 5 GeV. Once the boundary conditions for the 
running couplings are fixed, the solutions to the renormalization group equations provide 
their values at any given energy scale #. As I shall analyze in the next section, if there 
is only one light Higgs doublet in the low energy spectrum, it will be composed by a 
combination of the two scalar Higgs doublets/-/1 and/-/2 [23] with a mixing angle ~M = 

where tan 8 = R. Then, the top and bot tom quark Yukawa couplings appearing in the 
renormMization group equations (4.2) will be the effective couplings of the light scalar 
doublet with the top and bot tom quarks, h~ If and h~ "U, respectively. The continuity 
conditions at the scale As  will read, h~ ]! = hb cos 8 and h~ 1"f = ht sin 8. 

The results I shall present now come out from the study done in collaboration with 
Bardeen, Clark, Sasaki and Wagner [9], where we have used the renormalization group 
approach that I detailed above. The top quark mass has been computed as a function of 
the ratio R for various values of the compositeness and supersymmetry breaking scales. 
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Fig. 3: Top quark mass as a function of the ratio R, for a soft supersymmetry breaking 
scale As-- 1 TeV and three different values of the compositeness scale A, for the case of one 
light Higgs doublet (dashed line) and two light Higgs doublets (solid line). 
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Fig. 4. Top quark mass as a function of the ratio R, for three different values of the soft 
supersymmetry breaking scale, for the case of two Higgs doublets and a compositeness scale a) 
A = 101° GeV and b) A = 1016 GeV. 
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From Figs. 3 and 4, it is obvious that the top quark mass acquires its lowest value 
for the smallest value of R. In fact, for the small to moderate range of values of R, it 
increases monotonically with the ratio. For the large R regime, instead, a slight decrease 
in the top quark mass value is observed. To understand this behavior it is necessary 
to analyze the interplay of the two Yukawa couplings. Due to the experimentally fixed 
value of the bottom quark mass, the bottom quark Yulmwa coupling has a dependence 
on R given by, h~(R) = hb(R = 1)~/(1 + R2)/2. Thus, for larger values of R, hb becomes 
larger and the infrared quasi fixed point is reached for smaller values of the top quark 
Yul~wa coupling. In addition, the dependence of the vacuum expectation value of/-/2 
on the ratio, v2(R) = v2(R = 1)R~/2/(1 + RZ), is responsible for the increase in m, 
observed in the figures for the small and intermediate values of R and shows that v2 
varies only slightly for.large values of R. The approximate stability of v2, together with 
the decrease in h,, results in the decrease in the top quark mass for the large R regime. 
Furthermore, if R becomes too large ( R > 36 for A = 1018 GeV) the bottom quark 
Yukawa coupling becomes larger than the top quark one, implying an interchange of 
rolls between the two particles. In our computations, we have set an upper bound on 
R through the requirement that h, > hb. 

In Fig. 3 we have also plotted the results obtained in the case in which only one 
light scalar doublet emerges in the low energy theory. For small values of R,  the top 
quark mass predictions for the two light Higgs doublets scenario are slightly lower than 
those for the one light Higgs doublet case. However, quite in general, the top quark 
mass values are insensitive to the existence of one or two light Higgs doublets in the 
spectrum. 

In Figs. 4a and 4b, we concentrate on the variation of the top quark mass for 
different values of the soft supersymmetry breaking scale. Although the values of mt 
obtained for As as large as 10 TeV are slightly larger than those obtained for As = 
100 GeV or 1 TeV, in general, the low energy predictions for the top quark mass are 
stable under variations of As. In all the calculations we have done, the supersymmetric 
particles were assumed to decouple at the energy scale # = As. The stability of our 
results for different values of the soft supersymmetry breaking scale is, therefore, an 
important issue which supports such threshold approximation. From our computations 
it follows, that for values of the ratio R > 1 and a soft supersymmetry breaking scale 
As _~ 1 TeV the characteristic values of the top quark mass are 140 GeV < m, < 195 
GeV for A - 1016 GeV . If, instead, A = 10 l° GeV then 160 GeV < m, < 220 GeV. 

Moreover, in the numerical work done in Ref. [9], we have explored the change in 
the top quark mass results for different high energy values of the top quark Yukawa 
coupling. For a compositeness scale A > 1016 GeV (A > 10 l° GeV), a slight variation, 
of less than 1% (2%) Of the top quark mass value is obtained by setting Yt(A) = 0.1 
instead of Yt(A) -1 = 0. This analysis proves that, although the perturbative one loop 
renormalization group equations are not  a reliable tool to determine the evolution of 
the Yukawa coupling at energy scales # close to A, the action of the infrared quasi fixed 
point makes the top quark mass predictions quite insensitive to the precise boundary 
condition on the top quark Yutmwa coupling at A. 
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5 Renormalization Group Equations and the Scalar 
Higgs Spectrum 

In deriving low energy supersymmetry from a more fundamental theory such as super- 
gravity or superstrings [22], [24], it has been realized that there are soft supersymmetry 
breaking parameters which may be introduced in the model without spoiling the can- 
cellation of the quadratic divergences. Such parameters are the gaugino masses, the 
explicit mass parameters for the scalar components of the chiral superfields and the 
scalar couplings proportional to the trilinear and bilinear scalar terms in the superpo- 
tential. Moreover, there is also the free parameter m appearing in the superpotential. 
As I have discussed before, the compositeness condition imposes some constraints on the 
soft supersymmetry breaking parameters at the compositeness scale A. In addition to 
the cancellation of the trilinear coupling A(A), there is a fixed relation at the composite- 
ness scale among the supersymmetry breaking mass terms for the squarks and the scMar 
Higgs//2. Although these conditions increase the predictability of the model, they are 
not sufficient to determine the low energy values of the mass parameters appearing in 
the scalar Higgs potential. This may be already seen in the bubble sum approximation, 
in which the bilinear coupling B, the supersymmetry breaking mass M~I and the mass 
rn remain as free parameters, independent of the characteristic squark mass scale. The 
inclusion of the gauge interactions does not improve the predictability of the theory. 
In fact, after they have been introduced, the renormalization group flow of the mass 
parameters in the scalar potential depends in a complicated way, not only on the soft 
supersymmetry breaking squarks masses, but on the gaugino masses as well. The low 
energy values of the mass parameters can only be determined after fixing a particular 
supersymmetry breaking scheme. However, there is a wide range of possible values for 
m and the soft supersymmetry breaking parameters at # --- A that leads to low en- 
ergy predictions which are in agreement with experimental and theoretical constraints 
[24]. Therefore, for the purpose of this study, I shall treat the mass parameters in the 
scMar potential most generally by considering them as free parameters, with the only 
requirement given by the fulfillment of the minimization conditions at the weak scale. 

The low energy Higgs potential is given by the expression [9], 

A2 t 2 ,(5.1) (=,'=1)'+ y (=,=,) + ' " '  

where m~ = B m  and, as I said before, m~ and m~ take generic values. Actually, I shall 
then parametrize the solutions in terms of M 2 = (m~ -t- m ] ) /2  and R instead of m~, 
i = 1,2, 3. Quite in general, the parameter rn 2 decreases with increasing values of h,. 
In fact, for particular boundary conditions for the gauginos and scalars masses and for 
sufficiently large top quark Yul~wa couplings, there is a region in parameter space for 
which not only m] but also M 2 may become negative. After the inclusion of radiative 
corrections this will appear as a real possibility, without entering in conflict with the 
stability requirements for the effective potential (see below). In the following, I shall 
consider the case M 2 > 0, while the case in which M 2 acquires negative values will be 
included in the next section. 

In the expression of the low energy scalar potential, Eq. (5.1), all the relevant quar- 
tic couplings compatible with the symmetries of the theory have been considered. As 
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a matter of fact, the inclusion of other independentent quartic terms is protected by 
either discrete symmetries (//1 --~ -/-/1; H2 --~ -/'/2) or a global PQ symmetry. The 
PQ symmetry is only broken by the mass term m32 in the scalar potential. By consider- 
ing just the leading logarithmic contributions, no PQ symmetry breaking quartic term 
As(]HTiT2H2] 2 + h.c.) will be generated through the mass parameter m3 ~. Hence, h5 will 
not appear in the renormalization group analysis. 

At scales/~ above As the quartic couplings hi are determined through the D terms 
[16] of the electroweak gauge superfields, 

~ 4 ' 

g~ gl 2 
h3(~. > A s )  = - , h ( ~  > A s )  = _gA 

- 4 ' - 2 "  
(5,2) 

At low energy scales # below As, instead, the quartic couplings may be computed by 
solving the corresponding renormalization group equations [11], 

167r z dhl 
dt 

16rc 2 dh2 
dt 

_327r2 d.X3 
dt 

_ 327r 2 d/~4 
dt 

- 6 [h~ + (4~)=hl(r~ - , ~ 1 / 4 -  3,~=/4) + (4~ ) ' ( , ~ /16  +,~l ,~=/s  

+ 3 ~ / 1 ~ -  Y~2)] - 2 h ~ -  2 h ~ h , -  :q 

- 6 [h~ + (4~)~h=(Y, - ~1/4  - 3,~=/4) + (4~) ' (&~/16 

+ ~I,~_/S + 3&]/~6 - Y?)] - 2h~ - 2h~h, - h~ 

= (h= + hl)(6h~ + 2h,) + 4h~ + 2h, ~ + hz(4~)~(-3&l - 9~2 

+6Yt + 6Yb) + (4rr)4(9&]/4 + 3 ~ / 4  -- 3~1&2/2 + 12YtYb) 

= h4(2hl + 2X2 + Sh3 + 4h4) + 3h4(47r)2(-362 

-&l + 2Yt + 2Yb) + 3(47r)4(&,&2 + 4YtYb), (5.3) 

with the boundary conditions at p = As given by Eq. (5.2). 
The minimization conditions for the above potential read, 

2m~ 
sin(20) = (~y$12 "3 I- 9/22 ) -Jv hlVl 2 --~ .~2v22 4- (h3 --1-/\4)v 2' (5.4) 

and 
R ~ = tan 2 e = m~ + hlV~ m, ~ + h~v 2 + (hi - h2)v~ 

- ( 5 . 5 )  
m] + h2v~ m] Jr h~v ~ 

Concerning the stability conditions, in the absence of radiative corrections, the mass 
parameter M 2 must be greater than Ira312 in order to assure that the potential is stable 
along the direction IHll  = IH21. Once the radiative corrections are taken into account, 
the stability conditions imply that hi > 0, X2 > 0 and ~ > - h a  + Ih, I if h4 < 0 or 
v/~lh2 > - h a  if h4 > 0. These relations are always verified within this model  Hence, 
the low energy Higgs potential is stable. 

After the breakdown of the electroweak symmetry, the neutral components of the 
scalar fields acquired vacuum expectation values. By solving the eigenvalue equations 
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for the neutral and charged components of the scalar doublets, three neutral scalar 
eigenstates, h, H and A, and two charged ones, H*, appear in the low energy spectrum 
of the theory. The two neutral CP even scalar states have masses given by 

1 2 [2M 2 + 3A2v~ -t- 3),lV~ + (A3 -[- A4)v 2 ~T~ H, h ~ "~ 

cos(2e) + 2~1Vl ~ - 2~,~)2 + (m~ - 2(~3 + x,)~2)~ sin~(20)] (5.6) + 

where m A  is the mass of the neutral CP odd scalar state, 

m~ = 2M 2 + A2v~ + AlV~ + (~3 + A4)v 2. (5.7) 

Moreover, the minimization condition Eq. (5.4) implies m~ = 2m~/sin(2O). It is then 
straigtforward to see that, for nontrivial values of vl and v2, a vanishing value of rn32 
would imply an unacceptable massless CP odd axion in the theory. Finally, the mass of 
the charged Higgs eigenstates, mch, comes out as a function of the CP odd scalar mass 
as well, 

2 
mch = m ~  - ;~4v ~. (5.8) 

There are also a neutral CP odd and two charged massless Golstone modes, which are 
absorved by the electroweak gauge bosons through the usual Higgs mechanism. 

Furthermore, from the diagonalization of the mass matrices of the CP odd and 
charged Higgs eigenstates, it follows that they have a H1 - / / 2  mixing angle -8 .  From 
the above expressions for the scalar masses, Eqs. (5.6), (5.7) and (5.8), it can be readily 
observed that if M is of the order of the weak scale, two light Higgs doublets appear in 
the low energy spectrum. If, instead, the mass parameter M >> Mz, then the masses of 
the CP odd, charged and heaviest CP even states are approximately given by 2M 2. In 
addition, for such large values of M the/-/1 -/-/2 mixing arlgle for the neutral CP even 
states is approximately given by 8. Hence, the light CP even Higgs state together with 
the CP odd and charged Goldstone modes, forms a Higgs doublet ¢ whose expression 
is given by 

¢ = HI cos8 + ir2H~ sin8 (5.9) 

An alternative method to analyze the effective low energy model in the limit M >> 
Mz, is to assume from the beginning that, at scales below As, one has the standard 
model with only one light Higgs doublet [23]. Considering the effective potential for the 
scalar doublet ¢, 

V(¢) = m~¢t¢ + 2(¢t¢)  2, (5.10) 

the mass of the physical neutral scalar field ¢0 is given by, 

m~0 -- 2~v 2 (5.11) 

The value of the quartic coupling ~ at low energies is then computed by solving the 
corresponding renormalization group equation, 

1 6 ~ ,  = - 6  [~2 + (4~)2~(Y:" + ~ Z  - 5 1 / 4 -  352/4) + 

+ ~ / s  + 3~]/16 - (r:~s): - (yoS~)~)], (5.12) 
.2 .~.g2 

with the boundary condition ~(~,~) = ~ cos~(28), where ~°~J~,, = (hgS/4~') ~. The 
mass of ¢0 computed in this way is expected to coincide with the value mh determined 
in the general case whenever the mass parameter M is much larger than Mz. 
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Fig. 5: Top quark mass as a function of the lightest Higgs mass mh, for three different values 
of the mass paramete r  M (solid lines), and the same functional relat ion for the  case of one light 
Higgs doublet  (dashed line), for A s  = 1 TeV and ~) A = 10 t° GeV , b) A = 1016 GeV as well 
as for AS = 10 TeV and, once more, c) A = 10 l° GeV , d) A = 1016 GeV. 
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The following results have been obtained in Ref. [9], where we computed the scalar 
masses by using Eqs. (5.6), (5.7) (5.8) and (5.11). The low energy values of the running 
quartic couplings contributing to those equations have been evaluated at the renormal- 
ization scale #2 = m~, with ml being the corresponding scalar mass. For fixed values 
of the compositeness scale and the soft supersymmetry breaking scale, the top quark 
mass has only a functional dependence on the ratio R, while the scalar Higgs masses 
depend on R as well as on the mass parameter M. In Figs. 5a - 5d, the value of mt 
is given as a function of the lightest CP even scalar eigenstate mass for three different 
values of M > 0. Moreover, in all cases, that is, for As = 1 TeV and A = 101°(1016) 
GeV (Figs. 5 a (b)), and for As = 10 TeV and the same two values for A (Figs. 5 
c (d)), we have also computed the above values in the one light Higgs doublet case, 
which coincide remarkably well with those obtained in the two light Higgs model for 
M >> Mz. After the inclusion of radiative corrections, the tree level values of the scalar 
masses are drastically modified. In fact, from the above figures it follows that for M > 0 
and R _> 1, the lightest Higgs mass is enhanced to values which are above the present 
experimental bound, mh > 41 GeV [25]. 

So far, the value of the ratio of the vacuum expectation values has been assumed to 
be equal or greater than one. However, analyzing the renormalization group equations 
of the mass parameters m~ appearing in the scalar potential [22], it is possible to define 
a lower bound on R. Considering m~(h) = m](A), which is the standard condition 
in all the supersymmetry breaking schemes analyzed in the literature until now, then, 
provided ht > hb the relation m~(Mz) > m~(Mz) is fulfilled. Defining the mass pa- 
rameter M~2 = m~ - m~ and using the expression of the CP odd scalar mass mA, the 
minimization condition, Eq. (5.5), can be written as 

R = = + - - + 
rn~ + (~2 - ~3 - ,k4)v 2 - M~2" 

( 5 . 1 3 )  

For values of rn A >> Mz, the above equation implies that R _> 1, which is the lower 
bound on R in the case in which only one light Higgs doublet appears in the low energy 
theory. If, instead, one considers the two light Higgs doublet case, the result depends on 
the exact value of rnA and M~2. For M~2 ~ 0, the lower bound on R is obtained for the 
lowest possible value of rnA compatible with the experimental contraints. This yields 
a lower bound on mt of 120 GeV for the range of energy scales, A _ 1 - 10 TeV and 
A "~ 10 l° - 1016 GeV. In fact, the lower bound on R decreases when A decreases and also 
when As increases. However, since Yt increases under these conditions, the lower bound 
o n  mt remains unmodified. Moreover, the lower bound on R increases as a function of 
M~2. For M~2 = O(M~) or M~2 = O(A~) the R > 1 restriction is recovered. This is due 
to the fact that the lowest possible value of R occurs for mA >> Mz .  Thus, for a soft 
supersymmetry breaking scale A s _ 1 TeV and A = 1016 GeV, the top quark mass is 
bounded to be mt >_ 140 GeV. Furthermore, if As is assumed to be of the order of Mz, 
the quartic couplings will be approximately given by their supersymmetric expressions 
and the tree level bounds R >_ 1 and mh < Mzlcos(2/9)l will hold. In such case, for 
A = 1016 GeV and from the experimental bound on the lightest CP even mass [25], it 
follows that R > 1.6 and hence mt > 165 GeV. 
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6 Trivial i ty  B o u n d s  

For a consistent one loop perturbative treatment of the theory, the renormalized Yukawa 
coupling should fulfill the condition h2t/4~r < 1 for all energy scales below the cutoff 
scale. In fact, an upper bound on the value of the top quark Yukawa coupling may 
be obtained through the requirement that the Landau singularity associated with this 
quantity occurs at an energy scale just above the effective cutoff scale. Within the 
dynamical scheme under analysis, the signature for the realization of the electroweak 
symmetry breaking is a strong Yukawa coupling at the compositeness scale A, which 
acts as the effective cutoff scale up to which the model is valid as an effective theory. 
Thus, the values of the renormalized coupling at a given energy scale/~, which are 
obtained from the renormalization group trayectories associated with the compositeness 
condition, may be reinterpreted as upper bounds, the so called triviality bounds, on the 
top quark Yukawa coupling. Furthermore, for a given value of the ratio R and the 
mass parameter M or, equivalently, the CP odd mass, both mt and m h  are increasing 
functions of the top quark Yukawa coupling. Therefore, the values of m h  and ¢nt that I 
have presented in the last two sections are, in fact, upper bounds (triviality bounds) on 
both masses. Most interesting, they define general upper bounds on these quantities in 
any model which belongs to the same universality class as the one under consideration. 

As I have already discussed, the action of the infrared quasi fixed point results in the 
stability of the low energy predictions under variations of the boundary condition on the 
top quark Yukawa coupling at the scale A. Thus, for large values of A the perturbative 
renormalization group techniques provide a reliable computation of the top quark mass. 
If A - As, instead, the perturbative method gives just a rough estimate of the exact 
triviality bound on hr. In spite of that, such an estimate is useful since the existence 
of a Landau singularity in the one loop running coupling at scales # _ As will indicate 
the breakdown of the perturbative consistency of the theory. 

In the previous section, I showed that the scalar masses have a functional dependence 
on the mass parameter M. For the CP even eigenstates masses, I shall now rewrite such 
dependence on M as a function of the CP odd mass m A .  In particular, I am interested in 
defining the triviality bounds on mh as a function of the CP odd mass. The expression 
(5.6) may be written as follows [12], 

1 
[ . 4  + + ± - (6.1) m 2 H,h ~ ~ 

From the explicit expressions for fl and f2, 

11(0, ~,) = cos(~.O)(2~,v~ - ~.~v~) + 2sin~(2O)(~a + ~4): 

f 2 ( O , ~ i )  ~-- (2)~lVl 2 - 2)k2v22) 2 + 4 s i n 2 ( 2 0 ) [ ( ) ~ a  + ~4)v~] z , (6 .2 )  

it is straightforward to prove that f2 >_ fl  2. Thus, for fixed values of As and R the CP 
even masses depend only on m~. Moreover, it is ready to show that the minimum value 
of m h  occurs for m A  = O. This follows from the fact that, f2 > fl  2 is just the condition 
to have a minimum at m A  = 0 and also that one for which the first derivative of mH,h 
with respect to m A  is always positive for nonvanishing values of the CP odd state mass. 
In addition, for the particular case f2 = f~, it can be shown that if m~ > fl ,  then m h  

is independent of m A ,  while m g behaves like in the case f~. > fl  2. If, instead, rn~t < f~, 
the behavior of m H  a n d  m h  is interchanged. 
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From the above analysis, a lower bound on the CP even masses values, mH, hmi'~, is 
obtained for a vanishing value of the CP odd mass. However, from the knowledge that 
mH,h are monotonlca/ly increasing functions of mA, together with the information about 
the experimental bounds on the CP odd mass (m~t'), an improved lower bound on mH,h 
may be determined by replacing mA 0 by =P = m A . For example, after the inclusion of 
radiative corrections, for As = 1 TeV and for values of R _> 1, the experimental lower 
bounds on the CP odd mass obtained by extrapolating the results of Ref. [25] for values 

~=P > 35, 25, 20 GeV, respectively. Furthermore, from of m, = 120,160,200 GeV are m A _ 
the functional dependence of rnh on rnA, a finite upper bound on the fightest CP even 
scalar mass is defined in the limit of large values of the CP odd mass, rnA >> Mz, 

( m ' ~ " = )  2 = v 2 [2AI cos 4 8 + 2A2 sin 4 8 + (A3 + A4) sin2(28)] • (6.3) 

Therefore, the fightest CP even scalar Higgs mass is bounded by rn~ i~ < mh < rn~ ~= 
Considering the running of the quartic couplings compatible with the compositeness 
condition on the top quark Yukawa coupling, as done before, we obtain [12] the upper 
and lower bounds on ma within the top quark condensate model. The improved lower 
bound depends on the top quark mass through the experimental bound on mA and can 
only be considered in a restricted way. It is interesting to notice that, since the upper 
bound on mh is defined for mA >> Mz, it is effectively equivalent as to consider the 
model with only one fight neutral Higgs particle in the physical spectrum of the theory. 
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Fig. 6: Triviality bounds on the top quark mass (solid line) and on the l.ightest CP even 
Higgs mass as a function of the ratio R, for m A  = 40 GeV (long-dashed line), m A  = M Z  (dot- 
dashed line), in  A >> M z  (dashed line) and for an effective cutoff scale and a soft supersymmetry 
breaking scale a) As  = 1 TeV and A = 1016 GeV, b) AS = 1 TeV and A = 101° GeV, c) AS = 
10 TeV and A = 1016 GeV. The long dash-dashed lines in ( a ) a n d  (b) are the triviality bounds 
on rnh for m A = 25 GeV and m A  ---- 30 GeV, respectively. 
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For fixed values of the top quark mass, the triviality bounds on the top quark 
Yukawa coupling determine lower bounds on R, Rb, below which the theory will become 
perturbatively inconsistent at energy scales below the effective cutoff scale. Once more, 
for A = O ( A s )  the lower bounds on the ratio of vacuum expectation values, Rb = 
0.23, 0.30, 0.35 for m t =  120,160,200 GeV, respectively, are just a rough estimate. In 
fact, if the boundary condition on ht is changed from the compositeness condition to 
ht(A)2/4rc  = 1, the lower bounds on R turn out to be Rb = 0.28, 0.37, 0.47, respectively. 
On the contrary, in the case in which there is a huge hierarchy of energy scales ( A = 101° 
(1016) GeV), the Rb results are stable under variations of the boundary condition on h~. 

In many recent works [26], it has been remarked that the values of the gauge cou- 
plings obtMned in the most recent measurements at LEP are consistent with a super- 
symmetric grand unified scenario with a grand unification scale MatrT ~-- 1016 GeV and 
a soft supersymmetry breaking scale As = 1 TeV. H this were a signature of the pres- 
ence of a grand unified theory at the scale MaUT,  then m t  and mh must be below their 
triviality bounds for an effective cutoff A = MGUT. I n  Fig. 6a the triviality bounds on 
m t  and mh  are given as a function of R, for an effective cutoff scale of 1016 GeV, for dif- 
ferent values of m A  and for a soft supersymmetry breaking scale A = 1 TeV [12]. From 
these results it follows that, if perturbative unification is required at A = MGUT = 1016 
GeV, then the value of m t  can not be above 195 GeV, while the lightest Higgs mass 
must be below 135 GeV. On the other hand, for a top quark mass of mt = 120,160,200 
GeV, a lower bound on R may be derived, yielding Rb = 0.75, 1.4, oo, respectively. 

Before finishing this section let me comment on the possibility of a new decay mode 
for the lightest CP even Higgs particle. Recent analyses within the minimal supersym- 
metric standard model [12], [27], indicate that for small values of m A  < 40 GeV and 
for small values of R, there is an interesting region of parameters in which m h  ~ 2mA.  
Therefore, the decay mode h ---r A A  is kinematically allowed in such region, what could 
change the strategy of Higgs searches at LEP [28]. The analysis of the triviality bounds 
on m h  for As = 1 TeV and A = 1016 (101°) GeV presented in Figs. 6a (b) [12], clearly 
shows that for m A  ' ~  40 GeV, the lightest CP even state mass is bounded to be mh <_ 52 
(60) GeV. Hence, for m A  ~ 40 GeV the above phenomenologically interesting region 
of parameters requires too large top quark Yukawa couplings, for which one loop per- 
turbative consistency is lost at energy scales below the effective cutoff scale. In fact, 
for each value of A there is one value of R for which the relation f2 = f2 is fulfilled, 
implying that the lightest CP even mass is independent of mA.  For the range of energy 
scales considered in Figs. 6a and 6b, it occurs that the value of mh = mh]'*~ at which 
the curves for different m A  converge, is a maximum for any value of the CP odd mass 
below 40 GeV. Thus, the decay mode h ~ A A  will be allowed only if the condition 
mA < mlhi*/2 holds. This means that for As = 1 TeV and the cutoff scale A = 101° 
(1016) GeV, the proposed new decay mode for the lightest CP even scalar Higgs into 
two CP odd states will be possible only for quite small values of mA,  that is, m A  < 30 
(26) GeV. In principle, since the radiative corrections to the lightest CP even mass 
increase with As, this bound on m A  could increase with the supersymmetric threshold, 
too. However, Fig. 6c, in which A = 1016 GeV and As = 10 TeV has been considered, 
shows that the above lower bound on mA remains stable under variations of the soft 
supersymmetry breaking scale. 
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7 C o n c l u s i o n s  

I have presented a rather complete analysis on the values of the top quark and Higgs 
masses compatible with a dynamical breakdown of the electroweak symmetry, in a 
minimal supersymmetric standard model in which two Higgs doublets have masses below 
the soft supersymmetry breaking scale A s. For fixed values of the soft supersymmetry 
breaking scale and the cutoff scale, I have demostrated, in a way independent of the 
supersymmetry breaking scheme, that the values of the top quark mass depend only on 
the ratio of the Higgs vacuum expectation values R. For R > 1, A ~ 1016 GeV and 
As = 1 TeV, the characteristic values of the top quark mass are 140 GeV _< mt  <_ 195 
GeV, a prediction which is only mildly dependent on As. If A = 10 l° GeV, the values 
of the top quark mass become larger, 160GeV  <_ m ,  <_ 220GeV .  Slightly smaller values 
of mt are predicted if the value of R is smaller than one. 

The issue of dynamical symmetry breaking is related to the so called triviality bounds 
on the top quark and Higgs masses. The upper bounds (triviality bounds) on m, and 
mh for any theory in the same universality class as the supersymmetric top quark 
condensate model are computed as a function of R and for different values of the CP 
odd state mass rnA. In particular, for an effective cutoff scale of the order of A _ 1018 
GeV, which appears to be the favored grand unification scale according to recent LEP 
data, the phenomenologically interesting region of parameters for which m A  '~ 40 GeV 
and mh >_ 2mA is ruled out. The reason is that for this condition to be fulfilled, the 
top quark Yukawa coupling would become strong at energy scales significantly below 
MGUT. The possibility of a new decay mode h ---+ A A ,  which could induce unexplored 
decay patterns in the Higgs searches at LEP, appears to be consistent with one loop 
perturbative unification at a scale of the order of 1016 GeV and As =1 (10) TeV, only 
if m A < 26(29) GeV. In the same framework, for perturbative unification to hold, the 
top quark mass must be lighter than 195 GeV while mh < 135 (160) GeV if As = 
1 (10) TeV. In addition, if m A < Mz,  the lightest CP even state mass is lower than 
M z .  Moreover, due to the presence of the infrared quasi fixed point of the top Yukawa 
coupling, these results are expected to be stable under higher order loops effects. 

Within the supersymmetric extension, the same as in the standard top quark con- 
densate model, the underlying dynamics which generates the effective theory at the 
compositeness scale remains unspecified. In this talk I have focused on the simplest 
version of a model with supersymmetric nonrenormalizable interactions which can in- 
duce electroweak symmetry breakdown at low energies. It is presumable that a more 
general model, with additional higher dimensional interactions, which become irrelevant 
in the low energy regime, may generate similar results [29], [30]. It is also possible that 
the associated higher dimensional operators will modify the compositeness condition. 
However, due to the presence of the infrared quasi fixed behavior, the low energy values 
of the running couplings are expected to remain stable whenever A >> mr. In order to 
test the sensitivity of the top quark mass predictions to the inclusion of higher deriva- 
tive four Fermi interactions, an explicit computation, following Suzuki parametrization 
scheme [29], was recently done by Bardeen [31] in the frame of the standard top con- 
densate model. It was shown that, as far as the coefficients associated with the higher 
dimensional operators are at most of moderate strength, the predictions of the minimal 
model remain stable. In a recent study, Clark, Love and Ter Veldhuis [32] obtained the 
same stability property while extending the analysis to the supersymmetric case. More- 
over, although no fine tuning is required in the supersymmetric model, if one considers 
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the cutoff to set the scale of the nonrenormalizable interactions, then the four Fermi 
coupling seems to be huge. However, it is not certain what should determine the scale 
for the nonrenormalizable dynamics within the supersymmetric scheme. In this respect, 
there is a work by Ellwanger [33] proposing a model in which the supersymmetric four 
fermion coupling is derived to be of order 1/A~. Furthermore, some recent attemps 
have been done, to define the underlying theory which leads to the standard Nambu- 
Jona-Lasinio model at the compositeness scale [34]. It remains an interesting possibility 
to speculate about the physics beyond the effective cutoff scale in the supersymmetric 
top condensate scenario. 
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